Transition zone (Earth)
   HOME

TheInfoList



OR:

The transition zone is part of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
's
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
, and is located between the lower mantle and the
upper mantle The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from appr ...
, between a depth of 410 and 660 km (250 to 400 mi). The
Earth's mantle Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 1024 kg and thus makes up 67% of the mass of Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly so ...
, including the transition zone, consists primarily of
peridotite Peridotite ( ) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high pr ...
, an
ultramafic Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are composed ...
igneous rock Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma o ...
. The mantle was divided into the upper mantle, transition zone, and lower mantle as a result of sudden
seismic Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other ...
-velocity discontinuities at depths of 410 and 660 km (250 to 400 mi). This is thought to occur as a result of rearrangement of grains in
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers qui ...
(which constitutes a large portion of peridotite) at a depth of 410 km, to form a denser crystal structure as a result of the increase in pressure with increasing depth. Below a depth of 660 km, evidence suggests due to pressure changes ringwoodite minerals change into two new denser phases, bridgmanite and periclase. This can be seen using body waves from
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s, which are converted, reflected or refracted at the boundary, and predicted from
mineral physics Mineral physics is the science of materials that compose the interior of planets, particularly the Earth. It overlaps with petrophysics, which focuses on whole-rock properties. It provides information that allows interpretation of surface measure ...
, as the phase changes are temperature and density-dependent and hence depth dependent.


410 km discontinuity – phase transition

A peak is seen in seismological data at about 410 km as is predicted by the transition from α- to β-Mg2SiO4 (
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers qui ...
to
wadsleyite Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing p ...
). From the Clapeyron slope, this change is predicted to occur at shallower depths in cold regions, such as where
subducting Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the ...
slabs penetrate into the transition zone, and at greater depths in warmer regions, such as where
mantle plume A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hot ...
s pass through the transition zone.C.M.R. Fowler, The Solid Earth (2nd Edition), Cambridge University Press 2005. Therefore, the exact depth of the "410 km discontinuity" can vary.


660 km discontinuity – phase transition

The 660 km discontinuity appears in PP precursors (a wave which reflects off the discontinuity once) only in certain regions but is always apparent in SS precursors. It is seen as single and double reflections in receiver functions for P to S conversions over a broad range of depths (640–720 km, or 397–447 mi). The Clapeyron slope predicts a deeper discontinuity in cold regions and a shallower discontinuity in hot regions. This discontinuity is generally linked to the transition from
ringwoodite Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a ...
to
bridgmanite Silicate perovskite is either (the magnesium end-member is called bridgmanite) or (calcium silicate known as davemaoite) when arranged in a perovskite structure. Silicate perovskites are not stable at Earth's surface, and mainly exist in the l ...
and periclase. This is thermodynamically an endothermic reaction and creates a viscosity jump. Both characteristics cause this phase transition to play an important role in geodynamical models. Cold downwelling material might pond on this transition.


Other discontinuities

There is another major phase transition predicted at 520 km for the transition of olivine (β to γ) and
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different ...
in the pyrolite mantle. This one has only sporadically been observed in seismological data. Other non-global phase transitions have been suggested at a range of depths.


References

{{DEFAULTSORT:Transition Zone Structure of the Earth