Transition radiation
   HOME

TheInfoList



OR:

Transition radiation (TR) is a form of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
emitted when a
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary pa ...
passes through inhomogeneous media, such as a boundary between two different media. This is in contrast to Cherenkov radiation, which occurs when a charged particle passes through a homogeneous
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
medium at a speed greater than the phase velocity of
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
s in that medium.


History

Transition radiation was demonstrated theoretically by Ginzburg and
Frank Frank or Franks may refer to: People * Frank (given name) * Frank (surname) * Franks (surname) * Franks, a medieval Germanic people * Frank, a term in the Muslim world for all western Europeans, particularly during the Crusades - see Farang Curr ...
in 1945. They showed the existence of Transition radiation when a charged particle perpendicularly passed through a boundary between two different homogeneous media. The frequency of radiation emitted in the backwards direction relative to the particle was mainly in the range of
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
. The intensity of radiation was
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
ically proportional to the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
of the particle. After the first observation of the transition radiation in the optical region, many early studies indicated that the application of the optical transition radiation for the detection and identification of individual particles seemed to be severely limited due to the inherent low intensity of the radiation. Interest in transition radiation was renewed when Garibian showed that the radiation should also appear in the
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
region for ultrarelativistic particles. His theory predicted some remarkable features for transition radiation in the
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
region. In 1959 Garibian showed theoretically that energy losses of an ultrarelativistic particle, when emitting TR while passing the boundary between media and
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
, were directly proportional to the Lorentz factor of the particle. Theoretical discovery of x-ray transition radiation, which was directly proportional to the Lorentz factor, made possible further use of TR in
high-energy physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) a ...
. Thus, from 1959 intensive theoretical and experimental research of TR, and x-ray TR in particular began.


Transition radiation in the x-ray region

Transition radiation in the x-ray region (TR) is produced by relativistic charged particles when they cross the interface of two media of different dielectric constants. The emitted radiation is the homogeneous difference between the two inhomogeneous solutions of
Maxwell's equation Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
s of the electric and magnetic fields of the moving particle in each medium separately. In other words, since the electric field of the particle is different in each medium, the particle has to "shake off" the difference when it crosses the boundary. The total energy loss of a charged particle on the transition depends on its
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
and is mostly directed forward, peaking at an angle of the order of relative to the particle's path. The intensity of the emitted radiation is roughly proportional to the particle's energy . Optical transition radiation is emitted both in the forward direction and reflected by the interface surface. In case of a foil having an angle at 45 degrees with respect to a
particle beam A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and ne ...
, the particle beam's shape can be visually seen at an angle of 90 degrees. More elaborate analysis of the emitted visual radiation may allow for the determination of and emittance. In the approximation of relativistic motion (\gamma \gg 1), small angles (\theta \ll 1) and high frequency (\omega \gg \omega_p), the energy spectrum can be expressed as: \frac \approx \frac \bigg( ( 1 + 2 \nu^2) \ln(1 + \frac) - 2\bigg ) Where z is the atomic charge, e is the charge of an electron, \gamma is the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
, \omega_p is the
Plasma Frequency Plasma oscillations, also known as Langmuir waves (after Irving Langmuir), are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability i ...
. This divergences at low frequencies where the approximations fail. The total energy emitted is: I = \frac The characteristics of this
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
makes it suitable for particle discrimination, particularly of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s and
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s in the momentum range between and . The transition radiation
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s produced by electrons have
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
s in the x-ray range, with energies typically in the range from 5 to . However, the number of produced photons per interface crossing is very small: for particles with = 2×103, about 0.8 x-ray photons are detected. Usually several layers of alternating materials or composites are used to collect enough transition radiation photons for an adequate measurement—for example, one layer of inert material followed by one layer of detector (e.g. microstrip gas chamber), and so on. By placing interfaces (foils) of very precise thickness and foil separation, coherence effects will modify the transition radiation's spectral and angular characteristics. This allows a much higher number of photons to be obtained in a smaller angular "volume". Applications of this x-ray source are limited by the fact that the radiation is emitted in a cone, with a minimum intensity at the center. X-ray focusing devices (crystals/mirrors) are not easy to build for such radiation patterns.


See also

* Transition radiation detector


References

{{Reflist


Sources


Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple-scattering measurements, L. Wartski et al., Journal of Applied Physics -- August 1975 -- Volume 46, Issue 8, pp. 3644-3653


External links



Experimental particle physics Particle physics