Transcription factories
   HOME

TheInfoList



OR:

Transcription factories, in
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar work ...
describe the discrete sites where transcription occurs in the
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
, and are an example of a
biomolecular condensate In biochemistry, biomolecular condensates are a class of lipid bilayer, membrane-less organelles and organelle subdomains, which carry out specialized functions within the cell (biology), cell. Unlike many organelles, biomolecular condensate com ...
. They were first discovered in 1993 and have been found to have structures analogous to replication factories, sites where replication also occurs in discrete sites. The factories contain an
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens th ...
(active or inactive) and the necessary
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
( activators and
repressor In molecular genetics, a repressor is a DNA- or RNA-binding protein that inhibits the expression of one or more genes by binding to the operator or associated silencers. A DNA-binding repressor blocks the attachment of RNA polymerase to t ...
s) for transcription. Transcription factories containing
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of euka ...
are the most studied but factories can exist for RNA polymerase I and
III III or iii may refer to: Companies * Information International, Inc., a computer technology company * Innovative Interfaces, Inc., a library-software company * 3i, formerly Investors in Industry, a British investment company Other uses * ...
; the
nucleolus The nucleolus (, plural: nucleoli ) is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis, which is the synthesis of ribosomes. The nucleolus also participates in the formation of sign ...
being seen as the prototype for transcription factories. It is possible to view them under both
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
and
electron microscopy An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
. The discovery of transcription factories has challenged the original view of how RNA polymerase interacts with the DNA polymer and it is thought that the presence of factories has important effects on
gene regulation Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products ( protein or RNA). Sophisticated programs of gene expression are w ...
and nuclear structure.


Discovery

The first use of the term ‘transcription factory’ was used in 1993 b

and his colleagues who noticed that transcription occurred at discrete sites in the nucleus. This contradicted the original view that transcription occurred at an even distribution throughout the nucleus.


Structure

The structure of a transcription factory appears to be determined by
cell type A cell type is a classification used to identify cells that share morphological or phenotypical features. A multicellular organism may contain cells of a number of widely differing and specialized cell types, such as muscle cells and skin cell ...
, transcriptional activity of the
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
and also the method of technique used to visualise the structure. The generalised view of a transcription factory would feature between 4 – 30 RNA polymerase molecules and it is thought that the more transcriptionally active a cell is, the more polymerases that will be present in a factory in order to meet the demands of transcription. The core of the factory is
porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
rich, with the hyperphosphorylated, elongating form polymerases on the perimeter. The type of proteins present include:
ribonucleoproteins Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating int ...
, co-activators,
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
,
RNA helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separ ...
and splicing and processing enzymes. A factory only contains one type of RNA polymerase and the diameter of the factory varies depending on the RNA polymerase featured; RNA polymerase I factories are roughly 500 nm in width whereas RNA polymerase II and III factories a magnitude smaller at 50 nm. It has been experimentally shown that the transcription factory is immobilised to a structure and it is postulated that this immobilisation is because of a tethering to the nuclear matrix; this is because it has been shown it is tied to a structure that is unaffected by
restriction enzymes A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class ...
. Proteins that have been thought to be involved in the tethering includes
spectrin Spectrin is a cytoskeletal protein that lines the intracellular side of the plasma membrane in eukaryotic cells. Spectrin forms pentagonal or hexagonal arrangements, forming a scaffold and playing an important role in maintenance of plasma membr ...
,
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
and
lamins Lamins, also known as nuclear lamins are fibrous proteins in type V intermediate filaments, providing structural function and transcriptional regulation in the cell nucleus. Nuclear lamins interact with inner nuclear membrane proteins to form t ...
.


Function

The structure of a transcriptional factory directly relates to its function. Transcription is made more efficient because of the clustered nature of the transcription factory. All the necessary proteins: RNA polymerase, transcription factors and other co-regulators are present in the transcription factory that allows for faster RNA polymerisation when the DNA template reaches the factory, it also allows for a number of
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s to be transcribed at the same time.


Genomic location

The amount of transcription factories found per nucleus appears to be determined by cell type,
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriat ...
and the type of measurement. Cultured
mouse A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
nic
fibroblast A fibroblast is a type of biological cell that synthesizes the extracellular matrix and collagen, produces the structural framework ( stroma) for animal tissues, and plays a critical role in wound healing. Fibroblasts are the most common cells ...
s have been found to have roughly 1500 factories through
immunofluorescence Immunofluorescence is a technique used for light microscopy with a fluorescence microscope and is used primarily on microbiological samples. This technique uses the specificity of antibodies to their antigen to target fluorescent dyes to spe ...
detection of RNAP II however cells taken from different tissues of the same mouse group had between 100 and 300 factories. Measurements of the number of transcription factories in
HeLa HeLa (; also Hela or hela) is an immortalized cell line used in scientific research. It is the oldest and most commonly used human cell line. The line is derived from cervical cancer cells taken on February 8, 1951, named after Henrietta ...
cells give a varied result. For example, using the traditional fluorescence microscopy approach 300 – 500 factories were found but using both
confocal In geometry, confocal means having the same foci: confocal conic sections. * For an optical cavity consisting of two mirrors, confocal means that they share their foci. If they are identical mirrors, their radius of curvature, ''R''mirror, equals ' ...
and electron microscopy roughly 2100 were detected.


Factory specialisation

In addition to the specialisation factories have for the type of RNA polymerase they contain, there is a further level of specialisation present. There are some factories that only transcribe a certain set of related genes, this further strengthens the concept that the main function of a transcription factory is for transcriptional efficiency.


Assembly and maintenance

There is much debate to whether transcription factories assemble because of the transcriptional demands of the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
or if they are stable structures that are conserved over time. Experimentally, it appears that they remain fixed over a short period of time; newly made mRNA were pulse labelled over 15 minutes and it showed no new transcription factories appearing. This is also supported by inhibition experiments. In these studies heat shock was used to turn off transcription which resulted in no change in the number of polymerases detected. Upon further analysis of
western blot The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detect ...
data it was suggested that there was in fact a slight decrease over time of transcription factories. Therefore, it could be claimed that polymerase molecules are released gently over time from the factory when there is a lack of transcription which would eventually lead to the complete loss of the transcription factory. There is also several pieces of evidence that promotes the idea of transcription factories assembling ''de novo'' due to transcriptional demands. GFP polymerase fluorescence experiments have shown that the inducement of transcription in ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many speci ...
'' polytene nuclei leads to the formation of a factory which contradicts the notion of a stable and secure structure.


Mechanism

It was previously thought that it was the relatively small RNA polymerase that moves along the comparatively larger DNA template during transcription. However, increasing evidence supports the notion that due to the tethering of a transcription factory to the nuclear matrix, it is in fact the large DNA template that is moved to accommodate RNA polymerisation. ''
In vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology a ...
'' studies for example have shown that RNA polymerases attached to a surface are capable of both rotating the DNA template and threading it through the polymerase to start transcription; which indicates the capabilities of RNA polymerase to be a molecular motor.
Chromosome Conformation Capture Chromosome conformation capture techniques (often abbreviated to 3C technologies or 3C-based methods) are a set of molecular biology methods used to analyze the spatial organization of chromatin in a cell. These methods quantify the number of int ...
(3C) also supports the idea of the DNA template diffusing towards a stationary RNA polymerase. There remains a doubt to this mechanism of transcription. Firstly, it is unknown how a stationary polymerase is capable of transcribing genes on the (+)-strand and (-)-strand at the same genomic locus at the same time. This is in addition to a lack of conclusive evidence on how the polymerase remains immobilised (how it is tethered) and what structure it is tethered to.


Effect on genomic and nuclear structure

There are several consequences the formation of a transcription factory has on
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
and genomic structures. It has been proposed that the factories are responsible for nuclear organisation; they have been suggested to promote chromatin loop formation by two potential mechanisms: The first mechanism suggests that loops form because 2 genes on the same chromosome require the same transcription machinery that would be found in a specific transcription factory. This requirement will attract the gene loci to the factory thus creating a loop. Transcription factories are also suggested to be responsible for
gene cluster A gene family is a set of homologous genes within one organism. A gene cluster is a group of two or more genes found within an organism's DNA that encode similar polypeptides, or proteins, which collectively share a generalized function and are ...
ing, this is because related genes would require the same transcriptional machinery and if a factory satisfies these needs the genes would be attracted to the factory . While the clustering of genes can be beneficial for transcriptional efficiency, there could be negative consequences to this. Gene translocation events occur when genes are in close proximity to one another; which will occur more often when a transcriptional factory is present. Gene translocation events, like point mutations, generally are detrimental to the organism and so therefore could lead to the possibility of
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
. However, on the other hand recent research has suggested that there is no correlation between inter-gene interactions and translocation frequencies.


See also

* * *


References

{{Reflist Enzymes Gene expression Proteins