Tolman–Oppenheimer–Volkoff limit
   HOME

TheInfoList



OR:

The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of cold, nonrotating
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s, analogous to the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compar ...
for
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
stars. If the mass of the said star reaches the limit it will collapse to a denser form. Theoretical work in 1996 placed the limit at approximately 1.5 to 3.0 solar masses, corresponding to an original stellar mass of 15 to 20 solar masses; additional work in the same year gave a more precise range of 2.2 to 2.9 solar masses. Observations of
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
, the first gravitational wave event due to merging neutron stars (which are thought to have collapsed into a black hole within a few seconds after merging), placed the limit at close to 2.17  (solar masses). This value was inconsistent with short
gamma-ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
X-ray plateau data however, which suggested a value of ''M''TOV = 2.37 . Reanalysis of the GW170817 event data in 2019 resulted in a higher value of ''M''TOV = 2.3 . If
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
's remnant survived as neutron star, and the mass of PSR J1748−2021B has been measured properly (see below both), then ''M''TOV ≥ 2.74 . A neutron star in a binary pair (PSR J2215+5135) has been measured to have a mass close to this limit, . A more secure measurement of PSR J0740+6620, a pulsar being eclipsed by a white dwarf, yields a mass of . In the case of a rigidly spinning neutron star, the mass limit is thought to increase by up to 18–20%.


History

The idea that there should be an absolute upper limit for the mass of a cold (as distinct from thermal pressure supported) self-gravitating body dates back to the 1932 work of
Lev Landau Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His ac ...
, based on the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
. Pauli's principle shows that the
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
ic particles in sufficiently compressed matter would be forced into energy states so high that their
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
contribution would become negligible when compared with the relativistic kinetic contribution (RKC). RKC is determined just by the relevant quantum wavelength , which would be of the order of the mean interparticle separation. In terms of Planck units, with the
reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalen ...
, the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
, and the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
all set equal to one, there will be a corresponding
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
given roughly by At the upper mass limit, that pressure will equal the pressure needed to resist gravity. The pressure to resist gravity for a body of mass will be given according to the
virial theorem In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. ...
roughly by where is the density. This will be given by , where is the relevant mass per particle. It can be seen that the wavelength cancels out so that one obtains an approximate mass limit formula of the very simple form In this relationship, can be taken to be given roughly by the proton mass. This even applies in the
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
case (that of the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compar ...
) for which the fermionic particles providing the pressure are electrons. This is because the mass density is provided by the nuclei in which the neutrons are at most about as numerous as the protons. Likewise the protons, for charge neutrality, must be exactly as numerous as the electrons outside. In the case of neutron stars this limit was first worked out by
J. Robert Oppenheimer J. Robert Oppenheimer (; April 22, 1904 – February 18, 1967) was an American theoretical physicist. A professor of physics at the University of California, Berkeley, Oppenheimer was the wartime head of the Los Alamos Laboratory and is oft ...
and George Volkoff in 1939, using the work of Richard Chace Tolman. Oppenheimer and Volkoff assumed that the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s in a neutron star formed a
degenerate Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * Degenerate (album), ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party i ...
cold
Fermi gas An ideal Fermi gas is a state of matter which is an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer ...
. They thereby obtained a limiting mass of approximately 0.7 
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es, which was less than the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compar ...
for white dwarfs. Taking account of the strong nuclear repulsion forces between neutrons, modern work leads to considerably higher estimates, in the range from approximately 1.5 to 3.0 solar masses. The uncertainty in the value reflects the fact that the
equations of state In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or ...
for extremely dense matter are not well known. The mass of the pulsar PSR J0348+0432, at solar masses, puts an empirical lower bound on the TOV limit.


Applications

In a neutron star less massive than the limit, the weight of the star is balanced by short-range repulsive neutron–neutron interactions mediated by the strong force and also by the quantum degeneracy pressure of neutrons, preventing collapse. If its mass is above the limit, the star will collapse to some denser form. It could form a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
, or change composition and be supported in some other way (for example, by quark degeneracy pressure if it becomes a
quark star A quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks. Background Some massive ...
). Because the properties of hypothetical, more exotic forms of
degenerate matter Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, n ...
are even more poorly known than those of neutron-degenerate matter, most astrophysicists assume, in the absence of evidence to the contrary, that a neutron star above the limit collapses directly into a black hole. A black hole formed by the collapse of an individual star must have mass exceeding the Tolman–Oppenheimer–Volkoff limit. Theory predicts that because of mass loss during
stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is cons ...
, a black hole formed from an isolated star of solar
metallicity In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as ...
can have a mass of no more than approximately 10
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es. :Fig. 16 Observationally, because of their large mass, relative faintness, and X-ray spectra, a number of massive objects in
X-ray binaries X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the ''donor'' (usually a relatively normal star), to the other component, called the ''accretor'', which ...
are thought to be stellar black holes. These black hole candidates are estimated to have masses between 3 and 20
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es.
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large ...
has detected black hole mergers involving black holes in the 7.5–50 solar mass range; it is possible – although unlikely – that these black holes were themselves the result of previous mergers.


List of the most massive neutron stars

Below is a list of neutron stars which approach the TOV limit from below.


List of least massive black holes

Below is a list of black holes which approach the TOV limit from above.


List of objects in mass gap

This list contains objects that may be neutron stars, black holes, quark stars, or other exotic objects. This list is distinct from the list of least massive black holes due to the undetermined nature of these objects, largely because of indeterminate mass, or other poor observation data.


See also

*
Tolman–Oppenheimer–Volkoff equation In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modelled by general relativity. The equation is ...
*
Bekenstein bound In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy ''S'', or Shannon entropy ''H'', that can be contained within a given finite region of space which has a finite amount of energy—o ...
*
Quark star A quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks. Background Some massive ...


Notes


References

{{DEFAULTSORT:Tolman-Oppenheimer-Volkoff limit Astrophysics Neutron stars Black holes