Timeline of nuclear fusion
   HOME

TheInfoList



OR:

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
.


1920s

*1920 **Based on F.W. Aston's measurements of the masses of low-mass elements and Einstein's discovery that E=mc2, Arthur Eddington proposes that large amounts of energy released by fusing small nuclei together provides the energy source that powers the stars. **
Henry Norris Russell Henry Norris Russell ForMemRS HFRSE FRAS (October 25, 1877 – February 18, 1957) was an American astronomer who, along with Ejnar Hertzsprung, developed the Hertzsprung–Russell diagram (1910). In 1923, working with Frederick Saunders, he d ...
notes that the relationship in the Hertzsprung–Russell diagram suggests a hot core rather than burning throughout the star. Eddington uses this to calculate that the core would have to be about 40 million Kelvin. This was a matter of some debate at the time, because the value is much higher than what observations suggest, which is about one-third to one-half that value. *1928 **
George Gamow George Gamow (March 4, 1904 – August 19, 1968), born Georgiy Antonovich Gamov ( uk, Георгій Антонович Гамов, russian: Георгий Антонович Гамов), was a Russian-born Soviet and American polymath, theoret ...
introduces the mathematical basis for quantum tunnelling. *1929 **
Atkinson Atkinson may refer to: Places *Atkinson, Nova Scotia, Canada * Atkinson, Dominica, a village in Dominica *Atkinson, Illinois, U.S. * Atkinson, Indiana, U.S. *Atkinson, Maine, U.S. *Atkinson Lake, a lake in Minnesota, U.S. *Atkinson, Nebraska, U. ...
and Houtermans provide the first calculations of the rate of nuclear fusion in stars. Based on Gamow's tunnelling, they show fusion can occur at lower energies than previously believed. When used with Eddington's calculations of the required fusion rates in stars, their calculations demonstrate this would occur at the lower temperatures that Eddington had calculated.


1930s

*1932 **
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
's Cavendish Laboratory at
Cambridge University The University of Cambridge is a Public university, public collegiate university, collegiate research university in Cambridge, England. Founded in 1209 and granted a royal charter by Henry III of England, Henry III in 1231, Cambridge is the world' ...
begins nuclear experiments with a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
built by
John Cockcroft Sir John Douglas Cockcroft, (27 May 1897 – 18 September 1967) was a British physicist who shared with Ernest Walton the Nobel Prize in Physics in 1951 for splitting the atomic nucleus, and was instrumental in the development of nuclea ...
and
Ernest Walton Ernest Thomas Sinton Walton (6 October 1903 – 25 June 1995) was an Irish physicist and Nobel laureate. He is best known for his work with John Cockcroft to construct one of the earliest types of particle accelerator, the Cockcroft–Walton ...
. **In April, Walton produces the first man-made fission by using protons from the accelerator to split
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
into
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
s. **Using an updated version of the equipment firing deuterium rather than hydrogen,
Mark Oliphant Sir Marcus Laurence Elwin Oliphant, (8 October 1901 – 14 July 2000) was an Australian physicist and humanitarian who played an important role in the first experimental demonstration of nuclear fusion and in the development of nuclear weapon ...
discovered helium-3 and
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
, and that heavy
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
nuclei could be made to react with each other. This is the first direct demonstration of fusion in the lab. *1938 **Kantrowitz and Jacobs of the
NACA The National Advisory Committee for Aeronautics (NACA) was a United States federal agency founded on March 3, 1915, to undertake, promote, and institutionalize aeronautical research. On October 1, 1958, the agency was dissolved and its assets ...
Langley Research Center built a toroidal
magnetic bottle A magnetic mirror, known as a magnetic trap (магнитный захват) in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement device used in fusion power to trap high temperature plasma using magnetic fields. Th ...
and heat the plasma with a 150 W radio source. Hoping to heat the plasma to millions of degrees, the system fails and they are forced to abandon their Diffusion Inhibitor. This is the first attempt to make a working fusion reactor. *1939 ** Peter Thonemann develops a detailed plan for a pinch device, but is told to do other work for his thesis. **
Hans Bethe Hans Albrecht Bethe (; July 2, 1906 – March 6, 2005) was a German-American theoretical physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics, and solid-state physics, and who won the 1967 Nobel ...
provides detailed calculations of the
proton–proton chain The proton–proton chain, also commonly referred to as the chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun, where ...
reaction that powers stars. This work results in a
Nobel Prize for Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
.


1940s

*1948 ** James L. Tuck and Alan Alfred Ware build a prototype pinch device out of old radar parts at Imperial University.


1950s

*1950 **The
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
, a type of
magnetic confinement fusion Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with ...
device, was proposed by Soviet scientists
Andrei Sakharov Andrei Dmitrievich Sakharov ( rus, Андрей Дмитриевич Сахаров, p=ɐnˈdrʲej ˈdmʲitrʲɪjevʲɪtɕ ˈsaxərəf; 21 May 192114 December 1989) was a Soviet nuclear physicist, dissident, nobel laureate and activist for n ...
and
Igor Tamm Igor Yevgenyevich Tamm ( rus, И́горь Евге́ньевич Тамм , p=ˈiɡərʲ jɪvˈɡʲenʲjɪvitɕ ˈtam , a=Ru-Igor Yevgenyevich Tamm.ogg; 8 July 1895 – 12 April 1971) was a Soviet physicist who received the 1958 Nobel Prize in ...
. *1951 **
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care for ...
and Stanislaw Ulam at
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
(LANL) develop the
Teller-Ulam design A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
for the
thermonuclear weapon A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a low ...
, allowing for the development of multi-megaton weapons. **Fusion work in the UK is classified after the Klaus Fuchs affair. **A press release from
Argentina Argentina (), officially the Argentine Republic ( es, link=no, República Argentina), is a country in the southern half of South America. Argentina covers an area of , making it the second-largest country in South America after Brazil, th ...
claims that their
Huemul Project The Huemul Project ( es, Proyecto Huemul) was an early 1950s Argentine effort to develop a fusion power device known as the Thermotron. The concept was invented by Austrian scientist Ronald Richter, who claimed to have a design that would produc ...
had produced controlled nuclear fusion. This prompted a wave of responses in other countries, especially the U.S. ***
Lyman Spitzer Lyman Spitzer Jr. (June 26, 1914 – March 31, 1997) was an American theoretical physicist, astronomer and mountaineer. As a scientist, he carried out research into star formation, plasma physics, and in 1946, conceived the idea of telesco ...
dismisses the Argentinian claims, but while thinking about it comes up with the
stellarator A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the ...
concept. Funding is arranged under Project Matterhorn and develops into the
Princeton Plasma Physics Laboratory Princeton Plasma Physics Laboratory (PPPL) is a United States Department of Energy national laboratory for plasma physics and nuclear fusion science. Its primary mission is research into and development of fusion as an energy source. It is known ...
. ***Tuck introduces the British pinch work to LANL. He develops the
Perhapsatron The Perhapsatron was an early fusion power device based on the pinch concept in the 1950s. Conceived by James (Jim) Tuck while working at Los Alamos National Laboratory (LANL), he whimsically named the device on the chance that it might be able to ...
under the codename
Project Sherwood Project Sherwood was the codename for a United States program in controlled nuclear fusion during the period it was classified. After 1958, when fusion research was declassified around the world, the project was reorganized as a separate division w ...
. The project name is a play on his name via Friar Tuck. *** Richard F. Post presents his
magnetic mirror A magnetic mirror, known as a magnetic trap (магнитный захват) in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement device used in fusion power to trap high temperature plasma using magnetic fields. T ...
concept and also receives initial funding, eventually moving to Lawrence Livermore National Laboratory (LLNL). ***In the UK, repeated requests for more funding that had previously been turned down are suddenly approved. Within a short time, three separate efforts are started, one at Harwell and two at
Atomic Weapons Establishment The Atomic Weapons Establishment (AWE) is a United Kingdom Ministry of Defence research facility responsible for the design, manufacture and support of warheads for the UK's nuclear weapons. It is the successor to the Atomic Weapons Research ...
(Aldermaston). Early planning for a much larger machine at Harwell begins. ***Using the Huemul release as leverage, Soviet researchers find their funding proposals rapidly approved. Work on linear pinch machines begins that year. *1952 **
Ivy Mike Ivy Mike was the codename given to the first full-scale test of a thermonuclear device, in which part of the explosive yield comes from nuclear fusion. Ivy Mike was detonated on November 1, 1952, by the United States on the island of Elugelab ...
shot of Operation Ivy, the first detonation of a
thermonuclear weapon A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a low ...
, yields 10.4 megatons of TNT out of a fusion fuel of liquid deuterium. **Cousins and Ware build a larger toroidal pinch device in England and demonstrated that the plasma in pinch devices is inherently unstable. *1953 **The Soviet RDS-6S test, code named " Joe 4", demonstrated a fission/fusion/fission ("Layercake") design for a nuclear weapon. ** Linear pinch devices in the US and USSR report detections of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s, an indication of fusion reactions. Both are later explained as coming from instabilities in the fuel, and are non-fusion in nature. *1954 **Early planning for the large
ZETA Zeta (, ; uppercase Ζ, lowercase ζ; grc, ζῆτα, el, ζήτα, label= Demotic Greek, classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived f ...
device at Harwell begins. The name is a take-off on small experimental fission reactors which often had "zero energy" in their name,
ZEEP The ZEEP (Zero Energy Experimental Pile) reactor was a nuclear reactor built at the Chalk River Laboratories near Chalk River, Ontario, Canada (which superseded the Montreal Laboratory for nuclear research in Canada). ZEEP first went critical a ...
being an example. **
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care for ...
gives a now-famous speech on plasma stability in magnetic bottles at the Princeton Gun Club. His work suggests that most magnetic bottles are inherently unstable, outlining what is today known as the
interchange instability The interchange instability is a type of plasma instability seen in magnetic fusion energy that is driven by the gradients in the magnetic pressure in areas where the confining magnetic field is curved. The name of the instability refers to the ...
. *1955 **At the first
Atoms for Peace "Atoms for Peace" was the title of a speech delivered by U.S. President Dwight D. Eisenhower to the UN General Assembly in New York City on December 8, 1953. The United States then launched an "Atoms for Peace" program that supplied equipment ...
meeting in Geneva, Homi J. Bhabha predicts that fusion will be in commercial use within two decades. This prompts a number of countries to begin fusion research; Japan,
France France (), officially the French Republic ( ), is a country primarily located in Western Europe. It also comprises of overseas regions and territories in the Americas and the Atlantic, Pacific and Indian Oceans. Its metropolitan area ...
and Sweden all start programs this year or the next. *1956 **Experimental research of
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
systems started at
Kurchatov Institute The Kurchatov Institute (russian: Национальный исследовательский центр «Курчатовский Институт», 'National Research Centre "Kurchatov Institute) is Russia's leading research and developmen ...
,
Moscow Moscow ( , US chiefly ; rus, links=no, Москва, r=Moskva, p=mɐskˈva, a=Москва.ogg) is the capital and largest city of Russia. The city stands on the Moskva River in Central Russia, with a population estimated at 13.0 millio ...
by a group of Soviet scientists led by
Lev Artsimovich Lev Andreyevich Artsimovich ( Russian: Лев Андреевич Арцимович, February 25, 1909 – March 1, 1973), also transliterated Arzimowitsch, was a Soviet physicist who is regarded as the one of the founder of Tokamak— a device ...
. **Construction of ZETA begins at Harwell. **
Igor Kurchatov Igor Vasil'evich Kurchatov (russian: Игорь Васильевич Курчатов; 12 January 1903 – 7 February 1960), was a Soviet physicist who played a central role in organizing and directing the former Soviet program of nuclear weapo ...
gives a talk at Harwell on pinch devices, revealing for the first time that the USSR is also working on fusion. He details the problems they are seeing, mirroring those in the US and UK. **In August, a number of articles on plasma physics appear in various Soviet journals. **In the wake of the Kurchatov's speech, the US and UK begin to consider releasing their own data. Eventually, they settle on a release prior to the 2nd
Atoms for Peace "Atoms for Peace" was the title of a speech delivered by U.S. President Dwight D. Eisenhower to the UN General Assembly in New York City on December 8, 1953. The United States then launched an "Atoms for Peace" program that supplied equipment ...
conference in
Geneva , neighboring_municipalities= Carouge, Chêne-Bougeries, Cologny, Lancy, Grand-Saconnex, Pregny-Chambésy, Vernier, Veyrier , website = https://www.geneve.ch/ Geneva ( ; french: Genève ) frp, Genèva ; german: link=no, Genf ; it, Ginevr ...
in 1958. *1957 **In the US, at Los Alamos National Laboratory, LANL, Scylla I (thermonuclear fusion device), Scylla I begins operation using the θ-pinch design. **ZETA is completed in the summer, it will be the largest fusion machine for a decade. **In August, initial results on ZETA appear to suggest the machine has successfully reached basic fusion temperatures. UK researchers start pressing for public release, while the US demurs. **Scientists at the AEI Research laboratory in Harwell reported that the Sceptre (fusion reactor), Sceptre III plasma column remained stable for 300 to 400 microseconds, a dramatic improvement on previous efforts. Working backward, the team calculated that the plasma had an electrical resistivity around 100 times that of copper, and was able to carry 200 kA of current for 500 microseconds in total. *1958 **In January, the US and UK release large amounts of data, with the ZETA team claiming fusion. Other researchers, notably Artsimovich and Spitzer, are sceptical. **In May, a series of new tests demonstrate the measurements on ZETA were erroneous, and the claims of fusion have to be retracted. **American, British and USSR, Soviet scientists began to share previously classified controlled fusion research as part of the
Atoms for Peace "Atoms for Peace" was the title of a speech delivered by U.S. President Dwight D. Eisenhower to the UN General Assembly in New York City on December 8, 1953. The United States then launched an "Atoms for Peace" program that supplied equipment ...
conference in
Geneva , neighboring_municipalities= Carouge, Chêne-Bougeries, Cologny, Lancy, Grand-Saconnex, Pregny-Chambésy, Vernier, Veyrier , website = https://www.geneve.ch/ Geneva ( ; french: Genève ) frp, Genèva ; german: link=no, Genf ; it, Ginevr ...
in September. It is the largest international scientific meeting to date. It becomes clear that basic pinch concepts are not successful and that no device has yet created fusion at any level. **Scylla demonstrates the first controlled thermonuclear fusion in any laboratory, although confirmation came too late to be announced at Geneva. This Pinch (plasma physics)#The θ-pinch, θ-pinch approach will ultimately be abandoned as calculations show it cannot scale up to produce a reactor.


1960s

*1960 **After considering the concept for some time, John Nuckolls publishes the concept of inertial confinement fusion. The laser, introduced the same year, appears to be a suitable "driver". *1961 **The Soviet Union test the Tsar Bomba (50 megatons), the most powerful
thermonuclear weapon A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a low ...
ever. *1964 ** Plasma temperatures of approximately 40 million degrees Celsius and a few billion deuteron-deuteron fusion reactions per discharge were achieved at Los Alamos National Laboratory, LANL with the Scylla IV device. *1965 **At an international meeting at the UK's new fusion research centre in Culham, the Soviets release early results showing greatly improved performance in toroidal pinch machines. The announcement is met by scepticism, especially by the UK team who's ZETA was largely identical. Spitzer, chairing the meeting, essentially dismisses it out of hand. **At the same meeting, odd results from the ZETA machine are published. It will be years before the significance of these results are realized. **By the end of the meeting, it is clear that most fusion efforts have stalled. All of the major designs, including the
stellarator A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the ...
, pinch machines and
magnetic mirror A magnetic mirror, known as a magnetic trap (магнитный захват) in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement device used in fusion power to trap high temperature plasma using magnetic fields. T ...
s are all losing plasma at rates that are simply too high to be useful in a reactor setting. Less-known designs like the levitron (fusion reactor), levitron and Astron (fusion reactor), astron are faring no better. **The 12-beam "4 pi laser" using ruby as the lasing medium is developed at Lawrence Livermore National Laboratory (LLNL) includes a gas-filled target chamber of about 20 centimeters in diameter. *1967 **Demonstration of Farnsworth-Hirsch Fusor appeared to generate neutrons in a nuclear reaction. **
Hans Bethe Hans Albrecht Bethe (; July 2, 1906 – March 6, 2005) was a German-American theoretical physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics, and solid-state physics, and who won the 1967 Nobel ...
wins the 1967 Nobel Prize in physics for his publication on how fusion powers the stars in work of 1939. *1968 **Robert L. Hirsch is hired by Amasa Bishop of the United States Atomic Energy Commission, Atomic Energy Commission as staff physicist. Hirsch would eventually end up running the fusion program during the 1970s. **Further results from the T-3
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
, similar to the toroidal pinch machine mentioned in 1965, claims temperatures to be over an order of magnitude higher than any other device. The Western scientists remain highly sceptical. **The Soviets invite a UK team from ZETA to perform independent measurements on T-3. *1969 **The UK team, nicknamed "The Culham Five", confirm the Soviet results early in the year. They publish their results in October's edition of ''Nature''. This leads to a "veritable stampede" of tokamak construction around the world. **After learning of the Culham Five's results in August, a furious debate breaks out in the US establishment over whether or not to build a tokamak. After initially pooh-poohing the concept, the Princeton group eventually decides to convert their stellarator to a tokamak.


1970s

*1970 **Princeton's conversion of the Model C stellarator to the Symmetrical Tokamak is completed, and tests match the Soviet results. With an apparent solution to the magnetic bottle problem in-hand, plans begin for a larger machine to test the scaling and various methods to heat the plasma. **Kapchinskii and Teplyakov introduce a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
for heavy ions that appear suitable as an ICF driver in place of lasers. *1972 **The first neodymium-Doping (semiconductor), doped glass (Nd:glass) laser for ICF research, the "Long path laser, Long Path laser" is completed at LLNL and is capable of delivering ~50 joules to a fusion target. *1973 **Design work on Joint European Torus, JET, the Joint European Torus, begins. *1974 **John Bryan Taylor, J.B. Taylor re-visited ZETA results of 1958 and explained that the quiet-period was in fact very interesting. This led to the development of reversed field pinch, now generalised as "self-organising plasmas", an ongoing line of research. **KMS Fusion, a private-sector company, builds an ICF reactor using laser drivers. Despite limited resources and numerous business problems, KMS successfully compresses fuel in December 1973, and on 1 May 1974 successfully demonstrates the world's first laser-induced fusion. Neutron-sensitive nuclear emulsion detectors, developed by Nobel Prize winner Robert Hofstadter, were used to provide evidence of this discovery. ** Beams using mature high-energy accelerator technology are hailed as the elusive "brand-X" driver capable of producing fusion implosions for commercial power. The Livingston Curve, which illustrates the improvement in power of
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s over time, is modified to show the energy needed for fusion to occur. Experiments commence on the single beam LLNL Cyclops laser, testing new optical designs for future ICF lasers. *1975 **The Princeton Large Torus (PLT), the follow-on to the Symmetrical Tokamak, begins operation. It soon surpasses the best Soviet machines and sets several temperature records that are above what is needed for a commercial reactor. PLT continues to set records until it is decommissioned. *1976 **Workshop, called by the US-ERDA (now DoE) at the Claremont Hotel in Berkeley, CA for an ad-hoc two-week summer study. Fifty senior scientists from the major US ICF programs and accelerator laboratories participated, with program heads and Nobel laureates also attending. In the closing address, Dr. C. Martin Stickley, then Director of US-ERDA's Office of Inertial Fusion, announced the conclusion was "no showstoppers" on the road to fusion energy. **The two beam Argus laser is completed at LLNL and experiments involving more advanced laser-target interactions commence. **Based on the continued success of the PLT, the DOE selects a larger Princeton design for further development. Initially designed simply to test a commercial-sized tokamak, the DOE team instead gives them the explicit goal of running on a deuterium-tritium fuel as opposed to test fuels like hydrogen or deuterium. The project is given the name Tokamak Fusion Test Reactor (TFTR). *1977 **The 20 beam Shiva laser at LLNL is completed, capable of delivering 10.2 kilojoules of infrared energy on target. At a price of $25 million and a size approaching that of a football field, the Shiva laser is the first of the "megalasers" at LLNL and brings the field of ICF research fully within the realm of "big science". **The Joint European Torus, JET project is given the go-ahead by the European Commission, EC, choosing the UK's center at Culham as its site. *1978 **As PLT continues to set new records, Princeton is given additional funding to adapt TFTR with the explicit goal of reaching breakeven. *1979 **LANL successfully demonstrates the radio frequency quadrupole accelerator (RFQ). **Argonne National Laboratory, ANL and Hughes Research Laboratories demonstrate required ion source brightness with xenon beam at 1.5MeV. **The Foster Panel report to US-DoE's Energy Research and advisory board on ICF concludes that heavy ion fusion (HIF) is the "conservative approach" to ICF. Listing HIF's advantages in his report, John Foster remarked: "...now that is kind of exciting." After DoE Office of Inertial Fusion completed review of programs, Director Gregory Canavan decides to accelerate the HIF effort.


1980s

*1982 **HIBALL study by German and US institutions, Garching uses the high repetition rate of the RF accelerator driver to serve four reactor chambers and first-wall protection using liquid lithium inside the chamber cavity. **Tore Supra construction starts at Cadarache, France. Its superconductivity, superconducting magnets will permit it to generate a strong permanent toroidal magnetic field. **high-confinement mode (H-mode) discovered in tokamaks. *1983 **Joint European Torus, JET, the largest operational magnetic confinement plasma physics experiment is completed on time and on budget. First plasmas achieved. **The NOVETTE laser at LLNL comes on line and is used as a test bed for the next generation of ICF lasers, specifically the NOVA laser. *1984 **The huge 10 beam NOVA laser at LLNL is completed and switches on in December. NOVA would ultimately produce a maximum of 120 kilojoules of infrared laser light during a nanosecond pulse in a 1989 experiment. *1985 **National Academy of Sciences reviewed military ICF programs, noting HIF's major advantages clearly but averring that HIF was "supported primarily by other [than military] programs". The review of ICF by the National Academy of Sciences marked the trend with the observation: "The energy crisis is dormant for the time being." Energy becomes the sole purpose of heavy ion fusion. **The Japanese tokamak, JT-60 completed. First plasmas achieved. *1988 **The T-15 (reactor), T-15, Soviet tokamak with superconducting helium-cooled coils completed. **The Conceptual Design Activity for the International Thermonuclear Experimental Reactor (ITER), the successor to T-15 (reactor), T-15, TFTR, Joint European Torus, JET and JT-60, begins. Participants include EURATOM, Japan, the Soviet Union and United States. It ended in 1990. ** The first plasma produced at Tore Supra in April. *1989 **On March 23, two Utah electrochemists, Stanley Pons and Martin Fleischmann, announced that they had achieved cold fusion: fusion reactions which could occur at room temperatures. However, they made their announcements before any peer review of their work was performed, and no subsequent experiments by other researchers revealed any evidence of fusion.


1990s

*1990 **Decision to construct the National Ignition Facility "beamlet" laser at LLNL is made. *1991 **The Small Tight Aspect Ratio Tokamak, START Tokamak fusion experiment begins in Culham. The experiment would eventually achieve a record Fusion power#Beta, beta (plasma pressure compared to magnetic field pressure) of 40% using a neutral beam injector. It was the first design that adapted the conventional toroidal fusion experiments into a tighter spherical design. *1992 **The Engineering Design Activity for the ITER starts with participants EURATOM, Japan, Russia and United States. It ended in 2001. **The United States and the former republics of the Soviet Union cease nuclear weapons testing. *1993 **The TFTR tokamak at Princeton University, Princeton (PPPL) experiments with a 50% deuterium, 50%
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
mix, eventually producing as much as 10 megawatts of power from a controlled fusion reaction. *1994 **NIF Beamlet laser is completed and begins experiments validating the expected performance of NIF. **The USA declassifies information about indirectly driven (hohlraum) target design. **Comprehensive European-based study of HIF driver begins, centered at the Gesellschaft für Schwerionenforschung (GSI) and involving 14 laboratories, including USA and Russia. The Heavy Ion Driven Inertial Fusion (HIDIF) study will be completed in 1997. *1996 **A record is reached at Tore Supra: a plasma duration of two minutes with a current of almost 1 million amperes driven non-inductively by 2.3 MW of Lower hybrid oscillation, lower hybrid frequency waves (i.e. 280 MJ of injected and extracted energy). This result was possible due to the actively cooled plasma-facing components installed in the machine. *1997 **The Joint European Torus, JET tokamak in the UK produces 16 MW of fusion power - this remains the world record for fusion power. Four megawatts of
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
self-heating was achieved. **LLNL study compared projected costs of power from ICF and other fusion approaches to the projected future costs of existing energy sources. **Groundbreaking ceremony held for the National Ignition Facility (NIF). *1998 **The JT-60 tokamak in Japan produced a high performance reversed shear plasma with the equivalent fusion amplification factor Q_ of 1.25 - the current world record of Fusion energy gain factor, Q, fusion energy gain factor. **Results of European-based study of heavy ion driven fusion power system (HIDIF, GSI-98-06) incorporates telescoping beams of multiple isotopic species. This technique multiplies the 6-D phase space usable for the design of HIF drivers. *1999 **The United States withdraws from the ITER project. **The Small Tight Aspect Ratio Tokamak, START experiment is succeeded by Mega Ampere Spherical Tokamak, MAST.


2000s

*2001 **Building construction for the immense 192-beam 500-terawatt National Ignition Facility, NIF project is completed and construction of laser beam-lines and target bay diagnostics commences, expecting to take its first full system shot in 2010. **Negotiations on the Joint Implementation of ITER begin between Canada, countries represented by the European Union, Japan and Russia. *2002 **Claims and counter-claims are published regarding bubble fusion, in which a table-top apparatus was reported as producing small-scale fusion in a liquid undergoing cavitation, acoustic cavitation. Like cold fusion (see 1989), it is later dismissed. **European Union proposes Cadarache in France and Vandellos in Spain as candidate sites for ITER while Japan proposes Rokkasho. *2003 **The United States rejoins the ITER project with China and Republic of Korea also joining. Canada withdraws. **Cadarache in France is selected as the European Candidate Site for ITER. **Sandia National Laboratories begins fusion experiments in the Z Pulsed Power Facility, Z machine. *2004 **The United States drops its own ITER-scale tokamak project, Fusion Ignition Research Experiment, FIRE, recognising an inability to match EU progress. *2005 **Following final negotiations between the EU and Japan, ITER chooses Cadarache over Rokkasho for the site of the reactor. In concession, Japan is able to host the related materials research facility and granted rights to fill 20% of the project's research posts while providing 10% of the funding. **The national ignition facility, NIF fires its first bundle of eight beams achieving the highest ever energy laser pulse of 152.8 kJ (infrared). *2006 **China's EAST test reactor is completed, the first tokamak experiment to use superconducting magnets to generate both the toroidal and poloidal fields. *2009 **Construction of the national ignition facility, NIF reported as complete. **Ricardo Betti, the third Under Secretary, responsible for Nuclear Energy, testifies before Congress: "IFE [ICF for energy production] has no home".


2010s

*2010 **HIF-2010 Symposium in Darmstadt, Germany. Robert J Burke presented on Single Pass (Heavy Ion Fusion) HIF and Charles Helsley made a presentation on the commercialization of HIF within the decade. *2011 **May 23–26, Workshop for Accelerators for Heavy Ion Fusion at Lawrence Berkeley National Laboratory, presentation by Robert J. Burke on "Single Pass Heavy Ion Fusion". The Accelerator Working Group publishes recommendations supporting moving RF accelerator driven HIF toward commercialization. *2012 **Stephen Slutz & Roger Vesey of Sandia National Labs publish a paper in Physical Review Letters presenting a computer simulation of the MagLIF concept showing it can produce high gain. According to the simulation, a 70 Mega Amp Z-pinch facility in combination with a Laser may be able to produce a spectacular energy return of 1000 times the expended energy. A 60 MA facility would produce a 100x yield. **Joint European Torus, JET announces a major breakthrough in controlling instabilities in a fusion plasma
One step closer to controlling nuclear fusion
**In August Robert J. Burke presents updates to the Single Pass RF driver, SPRFD Heavy ion Fusion, HIF process and Charles Helsley presents the Economics of SPRFD at the 19th International HIF Symposium at Berkeley, California. Industry was there in support of ion generation for SPRFD. The Fusion Power Corporation SPRFD patent is granted in Russia. *2013 **China's EAST tokamak test reactor achieves a record confinement time of 30 seconds for plasma in the high-confinement mode (H-mode), thanks to improvements in heat dispersal from tokamak walls. This is an improvement of an order of magnitude with respect to state-of-the-art reactors. *2014 **US Scientists at National Ignition Facility, NIF successfully generate more energy from fusion reactions than the energy absorbed by the nuclear fuel. **Phoenix Nuclear Labs announces the sale of a high-yield neutron generator that could sustain 5×1011 deuterium fusion reactions per second over a 24-hour period. **On 9 October 2014, fusion research bodies from European Union member states and Switzerland signed an agreement to cement European collaboration on fusion research and EUROfusion, the European Consortium for the Development of Fusion Energy, was born. *2015 **Germany conducts the first plasma discharge in Wendelstein 7-X, a large-scale stellarator capable of steady-state plasma confinement under fusion conditions. **In January the polywell is presented at Microsoft Research. **In August, MIT announces the ARC fusion reactor, a compact tokamak using rare-earth barium-copper oxide (REBCO) superconducting tapes to produce high-magnetic field coils that it claims produce comparable magnetic field strength in a smaller configuration than other designs. *2016 **The Wendelstein 7-X produces the device's first hydrogen plasma. *2017 **China's EAST tokamak test reactor achieves a stable 101.2-second steady-state high confinement plasma, setting a world record in long-pulse H-mode operation on the night of July 3. **Helion Energy's fifth-generation plasma machine goes into operation, seeking to achieve plasma density of 20 Tesla and fusion temperatures. **UK company Tokamak Energy's ST40 fusion reactor generates first plasma. **TAE Technologies announces that the Norman reactor had achieved plasma. *2018 **Energy corporation Eni announces a $50 million investment in start-up Commonwealth Fusion Systems, to commercialize ARC fusion reactor, ARC technology via the SPARC (tokamak), SPARC test reactor in collaboration with MIT. **MIT scientists formulate a theoretical means to remove the excess heat from compact nuclear fusion reactors via larger and longer divertors. **General Fusion begins developing a 70% scale demo system to be completed around 2023. **TAE Technologies announces its reactor has reached a high temperature of nearly 20 million°C. **The Fusion Industry Association founded as an initiative in 2018, is the unified voice of the fusion industry, working to transform the energy system with commercially viable fusion power. * 2019 ** The United Kingdom announces a planned £200-million (US$248-million) investment to produce a design for the Spherical Tokamak for Energy Production (STEP) fusion facility around 2040.


2020s

* 2020 ** Assembly of ITER, which has been under construction for years, commences. ** The Chinese experimental
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
reactor HL-2M is turned on for the first time, achieving its first plasma discharge. * 2021 ** [] China's Experimental Advanced Superconducting Tokamak, EAST tokamak sets a new world record for superheated plasma, sustaining a temperature of 120 million degrees Celsius for 101 seconds and a peak of 160 million degrees Celsius for 20 seconds. ** [] The National Ignition Facility achieves generating 70% of the input energy, necessary to sustain fusion, from Inertial confinement fusion, inertial confinement fusion energy, an 8x improvement over previous experiments in spring 2021 and a 25x increase over the yields achieved in 2018. **The first Fusion Industry Association report was published - "The global fusion industry in 2021" ** [] China's Experimental Advanced Superconducting Tokamak (EAST), a nuclear fusion reactor research facility, sustained plasma at 70 million degrees Celsius for as long as 1,056 seconds (17 minutes, 36 seconds), achieving the new world record for sustained high temperatures (fusion energy however requires i.a. temperatures over 150 million °C). * 2022 ** [] The Joint European Torus in Oxford, UK, reports 59 megajoules produced with nuclear fusion over five seconds (11 megawatts of power), more than double the previous record of 1997. ** [] Researchers at Lawrence Livermore National Laboratory National Ignition Facility (NIF) in California has recorded the first case of ignition on August 8, 2021. Producing an energy yield of 0.72, of laser beam input to fusion output. ** [] Building on the achievement in August 2022, researchers at Lawrence Livermore National Laboratory National Ignition Facility (NIF) in California recorded the first ever net energy production with nuclear fusion, producing more fusion energy than laser beam put in. Laser efficiency was in the order of 1%.


References


Citations


Bibliography

*


External links


Fusion experiments from the British Science Museum
*International Fusion Research Council
Status report on fusion research
''Nuclear Fusion'' 45:10A, October 2005. {{Fusion power Physics timelines Technology timelines Nuclear fusion