HOME
The Info List - Timber


--- Advertisement ---



Lumber
Lumber
(American English; used only in North America) or timber (used in the rest of the English speaking world) is a type of wood that has been processed into beams and planks, a stage in the process of wood production. Lumber
Lumber
is mainly used for structural purposes but has many other uses as well. There are two main types of lumber. It may be supplied either rough-sawn, or surfaced on one or more of its faces. Besides pulpwood, rough lumber is the raw material for furniture-making and other items requiring additional cutting and shaping. It is available in many species, usually hardwoods; but it is also readily available in softwoods, such as white pine and red pine, because of their low cost.[1] Finished lumber is supplied in standard sizes, mostly for the construction industry – primarily softwood, from coniferous species, including pine, fir and spruce (collectively spruce-pine-fir), cedar, and hemlock, but also some hardwood, for high-grade flooring. It is classified more commonly made from softwood than hardwoods, and 80% of lumber comes from softwood.[2]

Contents

1 Terminology

1.1 Remanufactured lumber 1.2 Plastic lumber

2 Conversion of wood logs 3 Dimensional lumber

3.1 Historical Chinese construction 3.2 North American softwoods 3.3 Grades and standards 3.4 North American hardwoods 3.5 Engineered lumber 3.6 Various pieces and cuts 3.7 Timber piles

4 Defects in lumber

4.1 Conversion 4.2 Defects due to fungi and animals 4.3 Natural forces 4.4 Seasoning

5 Durability and service life

5.1 Moisture control 5.2 Controlling termites and other insects 5.3 Preservatives

6 Ancient construction works 7 Timber framing 8 Environmental effects of lumber

8.1 Residual wood

9 Notes 10 See also 11 References 12 Further reading 13 External links

Terminology[edit] In the United States
United States
milled boards of wood are referred to as lumber. However, in Britain and other Commonwealth nations, the term timber is instead used to describe sawn wood products, like floor boards. In the United States
United States
and Canada, generally timber describes standing or felled trees. Specifically in Canada, lumber describes cut and surfaced wood.[3] In the United Kingdom, the word lumber is rarely used in relation to wood and has several other meanings, including unused or unwanted items. Referring to wood, Timber is almost universally used instead. Remanufactured lumber[edit] See also: Timber recycling Remanufactured lumber is the result of secondary or tertiary processing/cutting of previously milled lumber. Specifically, it is lumber cut for industrial or wood-packaging use. Lumber
Lumber
is cut by ripsaw or resaw to create dimensions that are not usually processed by a primary sawmill. Resawing is the splitting of 1-inch through 12-inch hardwood or softwood lumber into two or more thinner pieces of full-length boards. For example, splitting a ten-foot 2×4 into two ten-foot 1×4s is considered resawing. Plastic lumber[edit] Further information: Plastic lumber, Fiber-reinforced composite, and Wood-plastic composite Structural lumber may also be produced from recycled plastic and new plastic stock. Its introduction has been strongly opposed by the forestry industry.[4] Blending fiberglass in plastic lumber enhances its strength, durability, and fire resistance.[5] Plastic fiberglass structural lumber can have a "class 1 flame spread rating of 25 or less, when tested in accordance with ASTM
ASTM
standard E 84," which means it burns slower than almost all treated wood lumber.[6] Conversion of wood logs[edit] Logs are converted into timber by being sawn, hewn, or split. Sawing with a rip saw is the most common method, because sawing allows logs of lower quality, with irregular grain and large knots, to be used and is more economical. There are various types of sawing:

Plain sawn (flat sawn, through and through, bastard sawn) – A log sawn through without adjusting the position of the log and the grain runs across the width of the boards. Quarter sawn and rift sawn – These terms have been confused in history but generally mean lumber sawn so the annual rings are reasonably perpendicular to the sides (not edges) of the lumber. Boxed heart – The pith remains within the piece with some allowance for exposure. Heart center – the center core of a log. Free of heart center (FOHC) – A side-cut timber without any pith. Free of knots (FOK) – No knots are present.

Dimensional lumber[edit]

The examples and perspective in this section deal primarily with North America and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (October 2014) (Learn how and when to remove this template message)

A 2×4

Dimensional lumber is lumber that is cut to standardized width and depth, specified in inches. Carpenters extensively use dimensional lumber in framing wooden buildings. Common sizes include 2×4 (pictured) (also two-by-four and other variants, such as four-by-two in Australia, New Zealand, and the UK), 2×6, and 4×4. The length of a board is usually specified separately from the width and depth. It is thus possible to find 2×4s that are four, eight, and twelve feet in length. In Canada
Canada
and the United States, the standard lengths of lumber are 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 feet (1.83, 2.44, 3.05, 3.66, 4.27, 4.88, 5.49, 6.10, 6.71 and 7.32 meters). For wall framing, "stud" or "precut" sizes are available, and are commonly used. For an eight-, nine-, or ten-foot ceiling height, studs are available in 92 5⁄8 inches (235 cm), 104 5⁄8 inches (266 cm), and 116 5⁄8 inches (296 cm). The term "stud" is used inconsistently to specify length; where the exact length matters, one must specify the length explicitly. Historical Chinese construction[edit] Under the prescription of the Method of Construction (營造法式) issued by the Southern Song
Southern Song
government in the early 12th century, timbers were standardized to eight cross-sectional dimensions.[7] Regardless of the actual dimensions of the timber, the ratio between width and height was maintained at 1:1.5. Units are in Song Dynasty inches (3.12 cm).

Class height width uses

1st 9 6 great halls 11 or 9 bays wide

2nd 8.25 5.5 great halls 7 or 5 bays wide

3rd 7.5 5 great halls 5 or 3 bays wide or halls 7 or 5 bays wide

4th 7.2 4.8 great halls 3 bays wide or halls 5 bays wide

5th 6.6 4.4 great halls 3 small bays wide or halls 3 large bays wide

6th 6 4 pagodas and small halls

7th 5.25 3.2 pagodas and small great halls

8th 4.5 3 small pagodas and ceilings

Timber smaller than the 8th class were called "unclassed" (等外). The width of a timber is referred to as one "timber" (材), and the dimensions of other structural components were quoted in multiples of "timber"; thus, as the width of the actual timber varied, the dimensions of other components were easily calculated, without resorting to specific figures for each scale. The dimensions of timbers in similar application show a gradual diminution from the Sui Dyansty (580~618) to the modern era; a 1st class timber during the Sui was reconstructed as 15×10 (Sui Dynasty inches, or 2.94 cm).[8] North American softwoods[edit] Solid dimensional lumber typically is only available up to lengths of 24 ft (7.32 m). Engineered wood
Engineered wood
products, manufactured by binding the strands, particles, fibers, or veneers of wood, together with adhesives, to form composite materials, offer more flexibility and greater structural strength than typical wood building materials.[9] Pre-cut studs save a framer much time, because they are pre-cut by the manufacturer for use in 8-, 9-, and 10-ft (2.44, 2.74 and 3.05 m) ceiling applications, which means the manufacturer has removed a few inches or centimetres of the piece to allow for the sill plate and the double top plate with no additional sizing necessary. In the Americas, two-bys (2×4s, 2×6s, 2×8s, 2×10s, and 2×12s), named for traditional board thickness in inches, along with the 4×4 (89 mm × 89 mm), are common lumber sizes used in modern construction. They are the basic building blocks for such common structures as balloon-frame or platform-frame housing. Dimensional lumber made from softwood is typically used for construction, while hardwood boards are more commonly used for making cabinets or furniture. Lumber's nominal dimensions are larger than the actual standard dimensions of finished lumber. Historically, the nominal dimensions were the size of the green (not dried), rough (unfinished) boards that eventually became smaller finished lumber through drying and planing (to smooth the wood). Today, the standards specify the final finished dimensions and the mill cuts the logs to whatever size it needs to achieve those final dimensions. Typically, that rough cut is smaller than the nominal dimensions because modern technology makes it possible and it uses the logs more efficiently. For example, a "2×4" board historically started out as a green, rough board actually 2 by 4 inches (51 mm × 102 mm). After drying and planing, it would be smaller, by a nonstandard amount. Today, a "2×4" board starts out as something smaller than 2 inches by 4 inches and not specified by standards, and after drying and planing is reliably 1 1⁄2 by 3 1⁄2 inches (38 mm × 89 mm).

North American softwood dimensional lumber sizes

Nominal Actual Nominal Actual Nominal Actual Nominal Actual Nominal Actual

inches inches mm inches inches mm inches inches mm inches inches mm inches inches mm

1 × 2 ​3⁄4 × ​1 1⁄2 19 × 38 2 × 2 ​1 1⁄2 × ​1 1⁄2 38 × 38      

1 × 3 ​3⁄4 × ​2 1⁄2 19 × 64 2 × 3 ​1 1⁄2 × ​2 1⁄2 38 × 64      

1 × 4 ​3⁄4 × ​3 1⁄2 19 × 89 2 × 4 ​1 1⁄2 × ​3 1⁄2 38 × 89 4 × 4 ​3 1⁄2 × ​3 1⁄2 89 × 89    

1 × 5 ​3⁄4 × ​4 1⁄2 19 × 114        

1 × 6 ​3⁄4 × ​5 1⁄2 19 × 140 2 × 6 ​1 1⁄2 × ​5 1⁄2 38 × 140 4 × 6 ​3 1⁄2 × ​5 1⁄2 89 × 140 6 × 6 ​5 1⁄2 × ​5 1⁄2 140 × 140  

1 × 8 ​3⁄4 × ​7 1⁄4 19 × 184 2 × 8 ​1 1⁄2 × ​7 1⁄4 38 × 184 4 × 8 ​3 1⁄2 × ​7 1⁄4 89 × 184   8 × 8 ​7 1⁄2 × ​7 1⁄2 191 × 191

1 × 10 ​3⁄4 × ​9 1⁄4 19 × 235 2 × 10 ​1 1⁄2 × ​9 1⁄4 38 × 235      

1 × 12 ​3⁄4 × ​11 1⁄4 19 × 286 2 × 12 ​1 1⁄2 × ​11 1⁄4 38 × 286      

Early standards called for green rough lumber to be of full nominal dimension when dry. However, the dimensions have diminished over time. In 1910, a typical finished 1-inch (25 mm) board was 13⁄16 in (21 mm). In 1928, that was reduced by 4%, and yet again by 4% in 1956. In 1961, at a meeting in Scottsdale, Arizona, the Committee on Grade Simplification and Standardization agreed to what is now the current U.S. standard: in part, the dressed size of a 1-inch (nominal) board was fixed at ​3⁄4 inch; while the dressed size of 2 inch (nominal) lumber was reduced from ​1 5⁄8 inch to the current ​1 1⁄2 inch.[10] Dimensional lumber is available in green, unfinished state, and for that kind of lumber, the nominal dimensions are the actual dimensions. Grades and standards[edit]

The longest board in the world (2002) is in Poland and measures 36.83 metres (about 120 ft 10 in) long.

Individual pieces of lumber exhibit a wide range in quality and appearance with respect to knots, slope of grain, shakes and other natural characteristics. Therefore, they vary considerably in strength, utility, and value. The move to set national standards for lumber in the United States began with publication of the American Lumber
Lumber
Standard in 1924, which set specifications for lumber dimensions, grade, and moisture content; it also developed inspection and accreditation programs. These standards have changed over the years to meet the changing needs of manufacturers and distributors, with the goal of keeping lumber competitive with other construction products. Current standards are set by the American Lumber
Lumber
Standard Committee, appointed by the U.S. Secretary of Commerce.[11] Design values for most species and grades of visually graded structural products are determined in accordance with ASTM
ASTM
standards, which consider the effect of strength reducing characteristics, load duration, safety and other influencing factors. The applicable standards are based on results of tests conducted in cooperation with the USDA
USDA
Forest Products Laboratory. Design Values for Wood Construction, which is a supplement to the ANSI/AF&PA National Design Specification® for Wood
Wood
Construction, provides these lumber design values, which are recognized by the model building codes.[12] Canada
Canada
has grading rules that maintain a standard among mills manufacturing similar woods to assure customers of uniform quality. Grades standardize the quality of lumber at different levels and are based on moisture content, size, and manufacture at the time of grading, shipping, and unloading by the buyer. The National Lumber Grades Authority (NLGA)[13] is responsible for writing, interpreting and maintaining Canadian lumber grading rules and standards. The Canadian Lumber
Lumber
Standards Accreditation Board (CLSAB)[14] monitors the quality of Canada's lumber grading and identification system. Attempts to maintain lumber quality over time have been challenged by historical changes in the timber resources of the United States
United States
– from the slow-growing virgin forests common over a century ago to the fast-growing plantations now common in today's commercial forests. Resulting declines in lumber quality have been of concern to both the lumber industry and consumers and have caused increased use of alternative construction products.[15][16] Machine stress-rated and machine-evaluated lumber is readily available for end-uses where high strength is critical, such as trusses, rafters, laminating stock, I-beams and web joints. Machine grading measures a characteristic such as stiffness or density that correlates with the structural properties of interest, such as bending strength. The result is a more precise understanding of the strength of each piece of lumber than is possible with visually graded lumber, which allows designers to use full-design strength and avoid overbuilding.[17] In Europe, strength grading of rectangular sawn timber (both softwood and hardwood) is done according to EN-14081 [18] and commonly sorted into classes defined by EN-338. For softwoods the common classes are (in increasing strength) C16, C18, C24 and C30. There are also classes specifically for hardwoods and those in most common use (in increasing strength) are D24, D30, D40, D50, D60 and D70. For these classes, the number refers to the required 5th percentile bending strength in Newtons per square millimetre. There are other strength classes, including T-classes based on tension intended for use in glulam.

C14, used for scaffolding and formwork C16 and C24, general construction C30, prefab roof trusses and where design requires somewhat stronger joists than C24 can offer. TR26 is also a common trussed rafter strength class in long standing use in the UK.[19] C40, usually seen in glulam

Grading rules for African and South American sawn timber have been developed by ATIBT[20] according to the rules of the Sciages Avivés Tropicaux Africains (SATA) and is based on clear cuttings – established by the percentage of the clear surface.[21] North American hardwoods[edit] In North America, market practices for dimensional lumber made from hardwoods[a] varies significantly from the regularized standardized 'dimension lumber' sizes used for sales and specification of softwoods – hardwood boards are often sold totally rough cut,[b] or machine planed only on the two (broader) face sides. When Hardwood
Hardwood
Boards are also supplied with planed faces, it is usually both by random widths of a specified thickness (normally matching milling of softwood dimensional lumbers) and somewhat random lengths. But besides those older (traditional and normal) situations, in recent years some product lines have been widened to also market boards in standard stock sizes; these usually retail in big box stores and using only a relatively small set of specified lengths;[c] in all cases hardwoods are sold to the consumer by the board-foot (144 cubic inches or 2,360 cubic centimetres), whereas that measure is not used for softwoods at the retailer (to the cognizance of the buyer).[d]

North American hardwood dimensional lumber sizes

Nominal (rough-sawn size) S1S (surfaced on one side) S2S (surfaced on two sides)

​1⁄2 in 3⁄8 in (9.5 mm) 5⁄16 in (7.9 mm)

​5⁄8 in 1⁄2 in (13 mm) 7⁄16 in (11 mm)

​3⁄4 in 5⁄8 in (16 mm) 9⁄16 in (14 mm)

1 in or ​4⁄4 in 7⁄8 in (22 mm) 13⁄16 in (21 mm)

​1 1⁄4 in or ​5⁄4 in 1 1⁄8 in (29 mm) 1 1⁄16 in (27 mm)

​1 1⁄2 in or ​6⁄4 in 1 3⁄8 in (35 mm) 1 5⁄16 in (33 mm)

2 in or ​8⁄4 in 1 13⁄16 in (46 mm) 1 3⁄4 inches (44 mm)

3 in or ​12⁄4 in 2 13⁄16 in (71 mm) 2 3⁄4 in (70 mm)

4 in or ​16⁄4 in 3 13⁄16 in (97 mm) 3 3⁄4 in (95 mm)

Also in North America, hardwood lumber is commonly sold in a "quarter" system, when referring to thickness; 4/4 (four quarter) refers to a 1-inch-thick (25 mm) board, 8/4 (eight quarter) is a 2-inch-thick (51 mm) board, etc. This "quarter" system is rarely used for softwood lumber; although softwood decking is sometimes sold as 5/4, even though it is actually one-inch thick (from milling 1/8th inch off each side in a motorized planing step of production). The "quarter" system of reference is a traditional (cultural) North American lumber industry nomenclature used specifically to indicate the thickness of rough sawn hardwood lumber. The following paragraph is exactly backwards from North American cultural practices where finished retail and rough lumber share the same terminology, as is discussed in the paragraph after about 'architects, designers, and builders': In rough sawn lumber it immediately clarifies that the lumber is not yet milled, avoiding confusion with milled dimension lumber which is measured as actual thickness after machining. Examples – 3/4", 19mm, or 1x. In recent years architects, designers, and builders have begun to use the "quarter" system in specifications as a vogue of insider knowledge, though the materials being specified are finished lumber, thus conflating the separate systems and causing confusion. Hardwoods cut for furniture are cut in the fall and winter, after the sap has stopped running in the trees. If hardwoods are cut in the spring or summer the sap ruins the natural color of the timber and decreases the value of the timber for furniture. Engineered lumber[edit] Main article: Engineered lumber Engineered lumber
Engineered lumber
is lumber created by a manufacturer and designed for a certain structural purpose. The main categories of engineered lumber are:[22]

Laminated veneer lumber
Laminated veneer lumber
(LVL) – LVL comes in ​1 3⁄4 inch thicknesses with depths such as ​9 1⁄2, ​11 7⁄8, 14, 16, 18, and 24 inches, and are often doubled or tripled up. They function as beams to provide support over large spans, such as removed support walls and garage door openings, places where dimensional lumber is insufficient, and also in areas where a heavy load is bearing from a floor, wall or roof above on a somewhat short span where dimensional lumber is impractical. This type of lumber is compromised if it is altered by holes or notches anywhere within the span or at the ends, but nails can be driven into it wherever necessary to anchor the beam or to add hangers for I-joists or dimensional lumber joists that terminate at an LVL beam. Wooden I-joists – sometimes called "TJI", "Trus Joists" or "BCI", all of which are brands of wooden I-joists, they are used for floor joists on upper floors and also in first floor conventional foundation construction on piers as opposed to slab floor construction. They are engineered for long spans and are doubled up in places where a wall will be aligned over them, and sometimes tripled where heavy roof-loaded support walls are placed above them. They consist of a top and bottom chord or flange made from dimensional lumber with a webbing in-between made from oriented strand board (OSB). The webbing can be removed up to certain sizes or shapes according to the manufacturer's or engineer's specifications, but for small holes, wooden I-joists come with "knockouts", which are perforated, pre-cut areas where holes can be made easily, typically without engineering approval. When large holes are needed, they can typically be made in the webbing only and only in the center third of the span; the top and bottom chords lose their integrity if cut. Sizes and shapes of the hole, and typically the placing of a hole itself, must be approved by an engineer prior to the cutting of the hole and in many areas, a sheet showing the calculations made by the engineer must be provided to the building inspection authorities before the hole will be approved. Some I-joists are made with W-style webbing like a truss to eliminate cutting and to allow ductwork to pass through.

Freshly cut logs showing sap running from beneath bark

Finger-jointed lumber – solid dimensional lumber lengths typically are limited to lengths of 22 to 24 feet, but can be made longer by the technique of "finger-jointing" by using small solid pieces, usually 18 to 24 inches long, and joining them together using finger joints and glue to produce lengths that can be up to 36 feet long in 2×6 size. Finger-jointing also is predominant in precut wall studs. It is also an affordable alternative for non-structural hardwood that will be painted (staining would leave the finger-joints visible). Care is taken during construction to avoid nailing directly into a glued joint as stud breakage can occur. Glulam
Glulam
beams – created from 2×4 or 2×6 stock by gluing the faces together to create beams such as 4×12 or 6×16. As such, a beam acts as one larger piece of lumber – thus eliminating the need to harvest larger, older trees for the same size beam. Manufactured trusses – trusses are used in home construction as a pre-fabricated replacement for roof rafters and ceiling joists (stick-framing). It is seen as an easier installation and a better solution for supporting roofs than the use of dimensional lumber's struts and purlins as bracing. In the southern U.S. and elsewhere, stick-framing with dimensional lumber roof support is still predominant. The main drawbacks of trusses are reduced attic space, time required for engineering and ordering, and a cost higher than the dimensional lumber needed if the same project were conventionally framed. The advantages are significantly reduced labor costs (installation is faster than conventional framing), consistency, and overall schedule savings.

Various pieces and cuts[edit] Further information: Woodworking

Square and rectangular forms: Plank, slat, batten, board, lath, strapping (typically ​3⁄4 in × ​1 1⁄2 in), cant (A partially sawn log such as sawn on two sides or squared to a large size and later resawn into lumber. A flitch is a type of cant with wane on one or both sides). Various pieces are also known by their uses such as post, beam, (girt), stud, rafter, joist, sill plate, wall plate. Rod forms: pole, (dowel), stick (staff, baton)

Timber piles[edit] In the United States, pilings are mainly cut from southern yellow pines and Douglas firs. Treated pilings are available in Chromated copper arsenate retentions of 0.60, 0.80 and 2.50 pounds per cubic foot (9.6, 12.8 and 40.0 kg/m3) if treatment is required. Defects in lumber[edit]

This article may be expanded with text translated from the corresponding article in German. (May 2016) Click [show] for important translation instructions.

View a machine-translated version of the German article. Google's machine translation is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English. Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article. You must provide copyright attribution in the edit summary by providing an interlanguage link to the source of your translation. A model attribution edit summary (using German): Content in this edit is translated from the existing German article at [[:de:Exact name of German article]]; see its history for attribution. You should also add the template TranslateddeHolzfehler to the talk page. For more guidance, see:Translation.

Defects occurring in lumber are grouped into the following four divisions: Conversion[edit] During the process of converting timber to commercial form the following defects may occur:

Chip mark: this defect is indicated by the marks or signs placed by chips on the finished surface of timber Diagonal grain: improper sawing of timber Torn grain: when a small depression is made on the finished surface due to falling of some tool Wane: presence of original rounded surface in the finished product

Defects due to fungi and animals[edit] Fungi attack timber when these conditions are all present:

The timber moisture content is above 25% on a dry-weight basis The environment is sufficiently warm Oxygen (O2) is present

Wood
Wood
with less than 25% moisture (dry weight basis) can remain free of decay for centuries. Similarly, wood submerged in water may not be attacked by fungi if the amount of oxygen is inadequate. Fungi timber defects:

Blue stain Brown rot Dry rot Heart rot Sap stain Wet rot White rot

Following are the insects and molluscs which are usually responsible for the decay of timber:

Woodboring beetles Marine borers (Barnea similis) Teredos (Teredo navalis) Termites Carpenter ants Carpenter bees

Natural forces[edit] Main article: wood warping There are two main natural forces responsible for causing defects in timber: abnormal growth and rupture of tissues. Rupture of tissue includes cracks or splits in the wood called "shakes". "Ring shake", "wind shake", or "ring failure" is when the wood grain separates around the growth rings either while standing or during felling. Shakes may reduce the strength of a timber and the appearance thus reduce lumber grade and may capture moisture, promoting decay. Eastern hemlock is known for having ring shake.[23] A "check" is a crack on the surface of the wood caused by the outside of a timber shrinking as it seasons. Checks may extend to the pith and follow the grain. Like shakes, checks can hold water promoting rot. A "split" goes all the way through a timber. Checks and splits occur more frequently at the ends of lumber because of the more rapid drying in these locations.[23] Seasoning[edit] The seasoning of lumber is typically either kiln- or air-dried. Defects due to seasoning are the main cause of splits, bowing and honeycombing.[24] Durability and service life[edit] Under proper conditions, wood provides excellent, lasting performance. However, it also faces several potential threats to service life, including fungal activity and insect damage – which can be avoided in numerous ways. Section 2304.11 of the International Building Code addresses protection against decay and termites. This section provides requirements for non-residential construction applications, such as wood used above ground (e.g., for framing, decks, stairs, etc.), as well as other applications. There are four recommended methods to protect wood-frame structures against durability hazards and thus provide maximum service life for the building. All require proper design and construction:

Controlling moisture using design techniques to avoid decay Providing effective control of termites and other insects Using durable materials such as pressure treated or naturally durable species of wood where appropriate Providing quality assurance during design and construction and throughout the building’s service life using appropriate maintenance practices

Moisture control[edit] Wood
Wood
is a hygroscopic material, which means it naturally absorbs and releases water to balance its internal moisture content with the surrounding environment. The moisture content of wood is measured by the weight of water as a percentage of the oven-dry weight of the wood fiber. The key to controlling decay is controlling moisture. Once decay fungi are established, the minimum moisture content for decay to propagate is 22 to 24 percent, so building experts recommend 19 percent as the maximum safe moisture content for untreated wood in service. Water by itself does not harm the wood, but rather, wood with consistently high moisture content enables fungal organisms to grow. The primary objective when addressing moisture loads is to keep water from entering the building envelope in the first place, and to balance the moisture content within the building itself. Moisture control by means of accepted design and construction details is a simple and practical method of protecting a wood-frame building against decay. For applications with a high risk of staying wet, designers specify durable materials such as naturally decay-resistant species or wood that has been treated with preservatives. Cladding, shingles, sill plates and exposed timbers or glulam beams are examples of potential applications for treated wood. Controlling termites and other insects[edit] For buildings in termite zones, basic protection practices addressed in current building codes include (but are not limited to) the following: • Grading the building site away from the foundation to provide proper drainage • Covering exposed ground in any crawl spaces with 6-mil polyethylene film and maintaining at least 12 to 18 inches (300 to 460 mm) of clearance between the ground and the bottom of framing members above (12 inches to beams or girders, 18 inches to joists or plank flooring members) • Supporting post columns by concrete piers so that there is at least 6 inches (150 mm) of clear space between the wood and exposed earth • Installing wood framing and sheathing in exterior walls at least eight inches above exposed earth; locating siding at least six inches from the finished grade • Where appropriate, ventilating crawl spaces according to local building codes • Removing building material scraps from the job site before backfilling. • If allowed by local regulation, treating the soil around the foundation with an approved termiticide to provide protection against subterranean termites Preservatives[edit] Main article: Wood
Wood
preservation

Special
Special
fasteners are used with treated lumber because of the corrosive chemicals used in its preservation process.

To avoid decay and termite infestation, untreated wood is separated from the ground and other sources of moisture. These separations are required by many building codes and are considered necessary to maintain wood elements in permanent structures at a safe moisture content for decay protection. When it is not possible to separate wood from the sources of moisture, designers often rely on preservative-treated wood.[25] Wood
Wood
can be treated with a preservative that improves service life under severe conditions without altering its basic characteristics. It can also be pressure-impregnated with fire-retardant chemicals that improve its performance in a fire.[26] One of the early treatments to "fireproof lumber", which retard fires, was developed in 1936 by the Protexol Corporation, in which lumber is heavily treated with salt.[27] Wood
Wood
does not deteriorate simply because it gets wet. When wood breaks down, it is because an organism is eating it. Preservatives work by making the food source inedible to these organisms. Properly preservative-treated wood can have 5 to 10 times the service life of untreated wood. Preserved wood is used most often for railroad ties, utility poles, marine piles, decks, fences and other outdoor applications. Various treatment methods and types of chemicals are available, depending on the attributes required in the particular application and the level of protection needed.[28] There are two basic methods of treating: with and without pressure. Non-pressure methods are the application of preservative by brushing, spraying or dipping the piece to be treated. Deeper, more thorough penetration is achieved by driving the preservative into the wood cells with pressure. Various combinations of pressure and vacuum are used to force adequate levels of chemical into the wood. Pressure-treating preservatives consist of chemicals carried in a solvent. Chromated copper arsenate, once the most commonly used wood preservative in North America began being phased out of most residential applications in 2004. Replacing it are amine copper quat and copper azole. All wood preservatives used in the United States
United States
and Canada
Canada
are registered and regularly re-examined for safety by the U.S. Environmental Protection Agency and Health Canada's Pest Management and Regulatory Agency, respectively.[28] Ancient construction works[edit] Timber was used as a dominant building material in most of the ancient temples of Kerala
Kerala
and coastal Karnataka
Karnataka
of India.[29] Timber framing[edit] Main article: Timber framing Timber framing
Timber framing
is a style of construction which uses heavier framing elements than modern stick framing, which uses dimensional lumber. The timbers originally were tree boles squared with a broadaxe or adze and joined together with joinery without nails. Modern timber framing has been growing in popularity in the United States
United States
since the 1970s.[30] Environmental effects of lumber[edit] Green building minimizes the impact or "environmental footprint" of a building. Wood
Wood
is a major building material that is renewable and replenishable in a continuous cycle.[28] Studies show manufacturing wood uses less energy and results in less air and water pollution than steel and concrete.[31] However, demand for lumber is blamed for deforestation.[32] Residual wood[edit] The conversion from coal to biomass power is a growing trend in the United States.[33] The United Kingdom, Uzbekistan, Kazakhstan, Australia, Fiji, Madagascar, Mongolia, Russia, Denmark, Switzerland and Swaziland governments all support an increased role for energy derived from biomass, which are organic materials available on a renewable basis and include residues and/or byproducts of the logging, sawmilling and papermaking processes. In particular, they view it as a way to lower greenhouse gas emissions by reducing consumption of oil and gas while supporting the growth of forestry, agriculture and rural economies. Studies by the U.S. government have found the country’s combined forest and agriculture land resources have the power to sustainably supply more than one-third of its current petroleum consumption.[34] Biomass
Biomass
is already an important source of energy for the North American forest products industry. It is common for companies to have cogeneration facilities, also known as combined heat and power, which convert some of the biomass that results from wood and paper manufacturing to electrical and thermal energy in the form of steam. The electricity is used to, among other things, dry lumber and supply heat to the dryers used in paper-making. Notes[edit]

^ Because working expensive hardwoods is far more difficult and costly, and because an odd width might well be conserved and be of use in making such surfaces as a cabinet side or table top joined from many smaller widths, the industry generally only does minimal processing, preserving as much board width as is practicable. This leaves culling and width decisions totally in the hands of the craftsman building cabinets or furniture with the boards. ^ In quarter sawn thicknesses, meaning the thickness and width dimensions as they come out of the sawmills table. Because lengths vary most with temperature, hardwoods boards in the US often have a bit of extra length. ^ small set of specified lengths: Fixed length hardwood boards in the United States
United States
are most common in 4–6' lengths, with a good representation of 8' lengths in a variety of widths, and a few widths with occasional dimensional sizes to 12' lengths. Often the longer sizes would need be special ordered. ^ Fixed board lengths not apply in all countries; for example, in Australia and the United States, many hardwood boards are sold to timber yards in packs with a common width profile (dimensions) but not necessarily consisting of boards of identical lengths.

See also[edit]

Cubic ton Deck (building) Engineered wood Hardwood
Hardwood
timber production List of woods Logging Lumberjack Non-timber forest product Recycling timber Timber treatment Wood
Wood
economy Woodworking

References[edit]

^ "Southern Pine
Pine
Cost Estimates". patscolor.com.  ^ " Hardwood
Hardwood
vs Softwood
Softwood
– Difference and Comparison". Diffen.  ^ "Conceptual Reference Database for Building Envelope Research". Archived from the original on 2008-02-23. Retrieved 2008-03-28.  ^ "Recycling and Deregulation: Opportunities for Market Development" Resource Recycling, September 1996 ^ " ASTM
ASTM
D6108 – 09 Standard Test Method for Compressive Properties of Plastic Lumber
Lumber
and Shapes" ASTM
ASTM
Committee D20.20 on Plastic Lumber ^ "SAFPLANK Interlocking Decking System" Archived 2013-04-26 at the Wayback Machine. Strongwell.com ^ 李, 誡 (1103). 營造法式. China: Song Government. Retrieved May 8, 2016.  ^ 王, 貴祥. "关于隋唐洛阳宫乾阳殿与乾元殿的平面_结构与形式之探讨". 中國建築史論匯刊. 3: 116.  ^ "Naturally:wood". Archived from the original on 2016-05-22.  ^ Smith, L. W. and L. W. Wood
Wood
(1964). "History of yard lumber size standards" (PDF). USDA
USDA
Forest Service, Forest Product Laboratory.  ^ "American Lumber
Lumber
Standard Committee: History". www.alsc.org.  ^ "Structural Properties and Performance" (PDF). woodworks.org. WoodWorks. Retrieved May 7, 2017.  ^ "National Lumber
Lumber
Grades Authority (Canada)". Archived from the original on 2011-08-11.  ^ "CLSAB and Lumber
Lumber
Grading Quality". www.clsab.ca. Canadian Lumber Standards Accreditation Board.  ^ "Minimizing the use of lumber products in residential construction". www.neo.ne.gov. Nebraska Energy Office.  ^ "Material substitution in the U.S. residential construction industry" (PDF). University of Washington, School of Forest Resources. Archived from the original (PDF) on 2010-06-20.  ^ "Naturally:wood". Archived from the original on 2016-05-22.  ^ Ridley-Ellis, Dan; Stapel, Peter; Baño, Vanesa (1 May 2016). "Strength grading of sawn timber in Europe: an explanation for engineers and researchers". European Journal of Wood
Wood
and Wood Products. 74 (3): 291–306. doi:10.1007/s00107-016-1034-1 – via link.springer.com.  ^ "What is TR26?". Centre for Wood
Wood
Science & Technology. 1 December 2015.  ^ ATIBT ^ "African and South American sawn timber". www.fordaq.com. Fordaq S.A., The Timber Network. Retrieved May 7, 2017.  ^ "Austin Energy page describing engineered structural lumber". Archived from the original on 2006-08-22. Retrieved 2006-09-10.  ^ a b U. S. Department of Agriculture. "Shake", The Encyclopedia of Wood. New York: Skyhorse Pub., 2007. Print. ^ karenkoenig (2016-04-04). "Understanding & working with wood defects". Woodworking
Woodworking
Network. Retrieved 2018-03-12.  ^ "WoodWorks Durability and Service Life" (PDF).  ^ " Wood
Wood
That Fights." Popular Sciences, March 1944, p. 59. ^ " Lumber
Lumber
is Made Fireproof by Salt Treatment" Popular Mechanics, April 1936 bottom-left p. 560 ^ a b c "About Treated Wood". CWC. Retrieved May 7, 2017.  ^ ALAYAM : The Hindu Temple;An Epitome of Hindu Culture; G.Venkataramana Reddy; Published by Adhyaksha; Sri Ramakrishna Math; ISBN 978-81-7823-542-4, p. 32 ^ Roy, Robert L.. Timber framing
Timber framing
for the rest of us. Gabriola Island, BC: New Society Publishers, 2004. 6. Print. ISBN 0865715084 ^ Lippke, B., E. Oneil, R. Harrison, K. Skog, L. Gustavsson, and R. Sathre. 2011. Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns. Carbon Management 2(3): 303–33. Archived 2011-11-10 at the Wayback Machine. ^ Peter Dauvergne and Jane Lister, Timber Archived 2016-05-22 at the Portuguese Web Archive (Polity Press, 2011). ^ "EERE News: EERE Network News".  ^ U.S. Department of Agriculture, U.S. Department of Energy Biomass
Biomass
as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, 2005 Executive Summary Archived 2008-08-25 at the Wayback Machine.

Further reading[edit]

Sathre, R; O'Conner, J (2010). A Synthesis of Research on Wood Products and Greenhouse Gas Impacts (PDF) (2 ed.). FPInnovations. ISBN 978-0-86488-546-3. Archived from the original (PDF) on 2012-03-21. 

External links[edit]

Look up lumber or timber in Wiktionary, the free dictionary.

Wikimedia Commons has media related to Timber.

National Hardwood
Hardwood
Lumber
Lumber
Association (Rules for Grading Hardwood Lumber
Lumber
– Inspector Training School) Timber Development Association of NSW – Australia TDA: Timber Decking Association – UK TRADA: Timber Research And Development Association The Forest Products Laboratory. U.S. main wood products research lab. Madison, WI (E) WCTE, World Conference on Timber Engineering June 20–24, 2010, Riva del Garda, Trentino, Italy Forest Products data in Canada
Canada
since 1990

v t e

Wood
Wood
products

Lumber/ timber

Batten Beam Bressummer Cruck Flitch beam Flooring Joist Lath Molding Panelling Plank Plate Post Purlin Rafter Railroad ties Reclaimed Shingle Siding Sill Stud Timber truss Treenail Truss Utility pole

Engineered wood

Glued laminated timber

veneer LVL parallel strand

I-joist Fiberboard

hardboard Masonite MDF

Oriented strand board Oriented structural straw board Particle board Plywood Structural insulated panel Wood-plastic composite

lumber

Fuelwood

Charcoal

biochar

Firelog Firewood Pellet fuel Wood
Wood
fuel

Fibers

Cardboard Corrugated fiberboard Paper Paperboard Pulp Pulpwood Rayon

Derivatives

Birch-tar Cellulose

nano

Hemicellulose Cellulosic ethanol Dyes Lignin Liquid smoke Lye Methanol Pyroligneous acid Pine
Pine
tar Pitch Sandalwood oil Tannin Wood
Wood
gas

By-products

Barkdust Black liquor Ramial chipped wood Sawdust Tall oil Wood
Wood
flour Wood
Wood
wool Woodchips

Historical

Axe
Axe
ties Clapboard Dugout canoe Potash Sawdust
Sawdust
brandy Split-rail fence Tanbark Timber framing Wooden masts

See also

Biomass Certified wood Destructive distillation Dry distillation Engineered bamboo Forestry List of woods Mulch Non-timber forest products Papermaking Wood
Wood
drying Wood
Wood
preservation Wood
Wood
processing Woodworking

Forestry
Forestry
portal Trees portal Category Commons WikiProject Forestry

v t e

Woodworking

Overviews

History Glossary Wood
Wood
(lumber)

Forms

Boat building Bow and arrow Bush carpentry Cabinetry Caning Carpentry Certosina Chainsaw
Chainsaw
carving Chip carving Clogs Ébéniste Fretwork Intarsia Japanese carpentry Khatam Kohlrosing Log building Marquetry Millwork Parquetry Pyrography Relief carving Root carving Sawdust Segmented turning Shingle weaving Shipbuilding Spindle turning Timber framing Treen Whittling Wood
Wood
carving Woodturning Wood
Wood
flour

Woods

Soft

Cedar (Calocedrus, Cedrus) Cypress Douglas fir Fir Juniper Larch Pine Spruce Yew

Hard

Ash Alder Aspen Balsa Beech Birch Cherry Chestnut Cocobolo Ebony Elm Hazel Lignum vitae Linden (lime, basswood) Mahogany Maple Oak Padauk Plum Poplar Teak Totara Walnut Willow

Tools

Abrasives Axe Adze Chisel Clamp Drawknife Drill Float Mallet Milling machine Mitre box Moulding plane Plane Rasp Router Sandpaper Spokeshave Timber-framing Vise Winding sticks Wood
Wood
scribe Workbench

Saws

Backsaw Bandsaw Bow Bucksaw Chainsaw Circular Compass Coping Crosscut Frame Fretsaw Jigsaw Keyhole Miter Rip Scroll Table Veneer Whipsaw

Geometry

Joints

Birdsmouth Bridle Butt Butterfly Coping Crown of thorns Dado Dovetail Finger Groove Halved Hammer-headed tenon Knee Lap Mason's mitre Miter Mortise and tenon Rabbet/Rebate Scarf Splice Tongue and groove

Profiles

Bead Bevel Chamfer Molding Ogee Ogive

Treatments

French polish Heat bending Paint Paint
Paint
stripper Steam bending Thermal Varnish Wood
Wood
drying Wood
Wood
preservation Wood
Wood
stain Wood
Wood
finishing

Organizations

American Association of Woodturners Architectural Woodwork Institute British Woodworking
Woodworking
Federation Building and Wood
Wood
Workers' International Caricature Carvers of America International Federation of Building and Wood
Wood
Workers National Wood
Wood
Carvers Association Society of Wood
Wood
Engravers Timber Framers Guild

Conversion

Chainsaw
Chainsaw
mill Hewing Sawmill Whipsaw Wood
Wood
splitting

Techniques

Frame and panel Frameless construction

Category WikiProject Commons

Authority control

GND: 4240026-0

Trees port

.