Thin film rechargeable lithium battery
   HOME

TheInfoList



OR:

The thin film lithium-ion battery is a form of
solid-state battery A solid-state battery is a battery technology that uses solid electrodes and a solid electrolyte, instead of the liquid or polymer gel electrolytes found in lithium-ion or lithium polymer batteries. While solid electrolytes were first discovered ...
. Its development is motivated by the prospect of combining the advantages of solid-state batteries with the advantages of
thin-film A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ap ...
manufacturing processes. Thin-film construction could lead to improvements in
specific energy Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, sto ...
, energy density, and
power density Power density is the amount of power (time rate of energy transfer) per unit volume. In energy transformers including batteries, fuel cells, motors, power supply units etc., power density refers to a volume, where it is often called volum ...
on top of the gains from using a solid electrolyte. It allows for flexible cells only a few
microns The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
thick. It may also reduce manufacturing costs from scalable
roll-to-roll processing In the field of electronic devices, roll-to-roll processing, also known as web processing, reel-to-reel processing or R2R, is the process of creating electronic devices on a roll of flexible plastic, metal foil, or flexible glass. In other fields ...
and even allow for the use of cheap materials. Lithium Ion Battery


Background

Lithium-ion batteries store chemical energy in reactive chemicals at the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
s and
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
s of a cell. Typically, anodes and cathodes exchange lithium (Li+) ions through a fluid electrolyte that passes through a porous separator which prevents direct contact between the anode and cathode. Such contact would lead to an internal
short circuit A short circuit (sometimes abbreviated to short or s/c) is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circui ...
and a potentially hazardous uncontrolled reaction. Electric current is usually carried by conductive collectors at the anodes and cathodes to and from the negative and positive terminals of the cell (respectively). In a thin-film lithium battery the electrolyte is solid and the other components are deposited in layers on a substrate. In some designs, the solid electrolyte also serves as a separator.


Components of Thin Film Battery


Cathode materials

Cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
materials in thin film lithium ion batteries are the same as in classical lithium ion batteries. They are normally metal oxides that are deposited as a film by various methods. Metal oxide materials are shown below as well as their relative specific capacities (), open circuit voltages (), and energy densities ().


Deposition methods for cathode materials

There are various methods being used to deposit thin film cathode materials onto the current collector.


Pulsed Laser Deposition (PLD)

In
Pulsed Laser Deposition Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. This material is vaporized from the ...
, materials are fabricated by controlling parameters such as laser energy and fluence, substrate temperature, background pressure, and target-substrate distance.


Magnetron Sputtering

In
Magnetron Sputtering Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re ...
the substrate is cooled for deposition.


Chemical Vapor Deposition (CVD)

In Chemical Vapor Deposition, volatile precursor materials are deposited onto a substrate material.


Sol-Gel Processing

Sol-gel processing allows for homogeneous mixing of precursor materials at the atomic level.


Electrolyte

The greatest difference between classical lithium ion batteries and thin, flexible, lithium ion batteries is in the electrolyte material used. Progress in
lithium ion batteries A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also see ...
relies as much on improvements in the electrolyte as it does in the electrode materials, as the electrolyte plays a major role in safe battery operation. The concept of thin film lithium ion batteries was increasingly motivated by manufacturing advantages presented by the polymer technology for their use as electrolytes. LiPON, lithium phosphorus oxynitride, is an amorphous glassy material used as an electrolyte material in thin film flexible batteries. Layers of LiPON are deposited over the cathode material at ambient temperatures by RF magnetron sputtering. This forms the solid electrolyte used for ion conduction between anode and cathode. LiBON, lithium boron oxynitride, is another amorphous glassy material used as a solid electrolyte material in thin film flexible batteries. Solid polymer electrolytes offer several advantages in comparison to a classical liquid lithium ion battery. Rather than having separate components of electrolyte, binder, and separator, these solid electrolytes can act as all three. This increases the overall energy density of the assembled battery because the constituents of the entire cell are more tightly packed.


Separator Material

Separator materials in lithium ion batteries must not block the transport of lithium ions while preventing the physical contact of the anode and cathode materials, e.g. short-circuiting. In a liquid cell, this separator would be a porous glass or polymer mesh that allows ion transport via the liquid electrolyte through the pores, but keeps the electrodes from contacting and shorting. However, in a thin film battery the electrolyte is a solid, which conveniently satisfies both the ion transportation and the physical separation requirements without the need for a dedicated separator.


Current Collector

Current collectors in thin film batteries must be flexible, have high surface area, and be cost-effective. Silver nanowires with improved surface area and loading weight have been shown to work as a current collector in these battery systems, but still are not as cost-effective as desired. Extending graphite technology to lithium ion batteries, solution processed
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
(CNT) films are being looked into for use as both the current collector and anode material. CNTs have the ability to intercalate lithium and maintain high operating voltages, all with low mass loading and flexibility.


Advantages and Challenges

Thin film lithium ion batteries offer improved performance by having a higher average output voltage, lighter weights thus higher energy density (3x), and longer cycling life (1200 cycles without degradation) and can work in a wider range of temperatures (between -20 and 60 °C)than typical rechargeable lithium-ion batteries. Li-ion transfer cells are the most promising systems for satisfying the demand of high specific energy and high power and would be cheaper to manufacture. In the thin film lithium ion battery, both
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s are capable of reversible lithium insertion, thus forming a Li-ion transfer cell. In order to construct a thin film battery it is necessary to fabricate all the battery components, as an
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
, a solid electrolyte, a
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
and current leads into multi-layered
thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
s by suitable technologies. In a thin film based system, the electrolyte is normally a solid electrolyte, capable of conforming to the shape of the battery. This is in contrast to classical lithium ion batteries, which normally have liquid electrolyte material. Liquid electrolytes can be challenging to utilize if they are not compatible with the separator. Also liquid electrolytes in general call for an increase in the overall volume of the battery, which is not ideal for designing a system that has high energy density. Additionally, in a thin film flexible Li-ion battery, the electrolyte, which is normally
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
-based, can act as the electrolyte, separator, and binder material. This provides the ability to have flexible systems since the issue of electrolyte leakage is circumvented. Finally, solid systems can be packed together tightly which affords an increase in energy density when compared to classical liquid lithium ion batteries. Separator materials in lithium ion batteries must have the ability to transport ions through their porous membranes while maintaining a physical separation between the anode and cathode materials in order to prevent short-circuiting. Furthermore, the separator must be resistant to degradation during the battery’s operation. In a thin film Li-ion battery, the separator must be a thin and flexible solid. Typically today, this material is a polymer-based material. Since thin film batteries are made of all solid materials, allows one to use simpler separator materials in these systems such as Xerox paper rather than in liquid based Li-ion batteries.


Scientific Development

Development of thin solid state batteries allows for roll to roll type production of batteries to decrease production costs.
Solid-state batteries A solid-state battery is a battery technology that uses solid electrodes and a solid electrolyte, instead of the liquid or polymer gel electrolytes found in lithium-ion or lithium polymer batteries. While solid electrolytes were first discovered ...
can also afford increased energy density due to decrease in overall device weight, while the flexible nature allows for novel battery design and easier incorporation into electronics. Development is still required in
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
materials which will resist capacity reduction due to cycling.


Makers

*
Murata Manufacturing is a Japanese manufacturer of electronic components, based in Nagaokakyo, Kyoto. Honorary Chairman Akira Murata started Murata Manufacturing as a personal venture in October, 1944. In December 1950 reorganized the company into Murata Manufac ...


Applications

The advancements made to the thin film lithium ion battery have allowed for many potential applications. The majority of these applications are aimed at improving the currently available consumer and medical products. Thin film lithium ion batteries can be used to make thinner portable electronics, because the thickness of the battery required to operate the device can be reduced greatly. These batteries have the ability to be an integral part of implantable medical devices, such as
defibrillators Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). A defibrillator delivers a dose of electric current (often called a ''co ...
and neural stimulators, “smart” cards,
radio frequency identification Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electrom ...
, or RFID, tags and wireless sensors. They can also serve as a way to store energy collected from solar cells or other harvesting devices. Each of these applications is possible because of the flexibility in the size and shape of the batteries. The size of these devices does not have to revolve around the size of the space needed for the battery anymore. The thin film batteries can be attached to the inside of the casing or in some other convenient way. There are many opportunities in which to use this type of batteries.


Renewable energy storage devices

The thin film lithium ion battery can serve as a storage device for the energy collected from renewable sources with a variable generation rate, such as a
solar cell A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
or
wind turbine A wind turbine is a device that converts the kinetic energy of wind into electrical energy. Hundreds of thousands of large turbines, in installations known as wind farms, now generate over 650 gigawatts of power, with 60 GW added each yea ...
. These batteries can be made to have a low self discharge rate, which means that these batteries can be stored for long periods of time without a major loss of the energy that was used to charge it. These fully charged batteries could then be used to power some or all of the other potential applications listed below, or provide more reliable power to an electric grid for general use.


Smart cards

Smart cards A smart card, chip card, or integrated circuit card (ICC or IC card) is a physical electronic authentication device, used to control access to a resource. It is typically a plastic credit card-sized card with an embedded integrated circuit (IC) c ...
have the same size as a credit card, but they contain a microchip that can be used to access information, give authorization, or process an application. These cards can go through harsh production conditions, with temperatures in the range of 130 to 150 °C, in order to complete the high temperature, high pressure lamination processes. These conditions can cause other batteries to fail because of degassing or degradation of organic components within the battery. Thin film lithium ion batteries have been shown to withstand temperatures of -40 to 150 °C. This use of thin film lithium ion batteries is hopeful for other extreme temperature applications.


RFID tags

Radio Frequency Identification Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electrom ...
(RFID) tags can be used in many different applications. These tags can be used in packaging, inventory control, used to verify authenticity and even allow or deny access to something. These ID tags can even have other integrated sensors to allow for the physical environment to be monitored, such as temperature or shock during travel or shipping. Also, the distance required to read the information in the tag depends on the strength of the battery. The farther away you want to be able to read the information, the stronger the output will have to be and thus the greater the power supply to accomplish this output. As these tags get more and more complex, the battery requirements will need to keep up. Thin film lithium ion batteries have shown that they can fit into the designs of the tags because of the flexibility of the battery in size and shape and are sufficiently powerful enough to accomplish the goals of the tag. Low cost production methods, like roll to roll lamination, of these batteries may even allow for this kind of RFID technology to be implemented in disposable applications.


Implantable Medical Devices

Thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
s of LiCoO2 have been synthesized in which the strongest
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V (approximately 0.2 mAh/cm2) was delivered at a current of 2 mA/cm2. When cycled at rates of 0.1 mA/cm2, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO2 thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and
defibrillator Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). A defibrillator delivers a dose of electric current (often called a ''coun ...
s. Implantable medical devices require batteries that can deliver a steady, reliable power source for as long as possible. These applications call for a battery that has a low self-discharge rate, for when it’s not in use, and a high power rate, for when it needs to be used, especially in the case of an implantable
defibrillator Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). A defibrillator delivers a dose of electric current (often called a ''coun ...
. Also, users of the product will want a battery that can go through many cycles, so these devices will not have to be replaced or serviced often. Thin film lithium ion batteries have the ability to meet these requirements. The advancement from a liquid to a solid electrolyte has allowed these batteries to take almost any shape without the worry of leaking, and it has been shown that certain types of thin film rechargeable lithium batteries can last for around 50,000 cycles. Another advantage to these thin film batteries is that they can be arranged in
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in ...
to give a larger
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
equal to the sum of the individual battery voltages. This fact can be used in reducing the “footprint” of the battery, or the size of the space needed for the battery, in the design of a device.


Wireless Sensors

Wireless sensors need to be in use for the duration of their application, whether that may be in package shipping or in the detection of some unwanted compound, or controlling inventory in a warehouse. If the wireless sensor cannot transmit its data due to low or no battery power, the consequences could potentially be severe based on the application. Also, the wireless sensor must be adaptable to each application. Therefore the battery must be able to fit within the designed sensor. This means that the desired battery for these devices must be long-lasting, size specific, low cost, if they are going to be used in disposable technologies, and must meet the requirements of the data collection and transmission processes. Once again, thin film lithium ion batteries have shown the ability to meet all of these requirements.


See also

*
List of battery types This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery chemistry. ...
*
Lithium-ion battery A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also s ...


References

{{Galvanic cells Rechargeable batteries Lithium-ion batteries Thin films Flexible electronics