Thermophoresis
   HOME

TheInfoList



OR:

Thermophoresis (also thermomigration, thermodiffusion, the Soret effect, or the Ludwig–Soret effect) is a phenomenon observed in mixtures of mobile particles where the different particle types exhibit different responses to the force of a temperature gradient. This phenomenon tends to move light molecules to hot regions and heavy molecules to cold regions. The term ''thermophoresis'' most often applies to aerosol mixtures whose
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
\lambda is comparable to its characteristic length scale L, but may also commonly refer to the phenomenon in all phases of matter. The term ''Soret effect'' normally applies to liquid mixtures, which behave according to different, less well-understood mechanisms than gaseous mixtures. Thermophoresis may not apply to thermomigration in solids, especially multi-phase alloys.


Thermophoretic force

The phenomenon is observed at the scale of one millimeter or less. An example that may be observed by the naked eye with good lighting is when the hot rod of an electric heater is surrounded by tobacco smoke: the smoke goes away from the immediate vicinity of the hot rod. As the small particles of air nearest the hot rod are heated, they create a fast flow away from the rod, down the temperature gradient. They have acquired higher kinetic energy with their higher temperature. When they collide with the large, slower-moving particles of the tobacco smoke they push the latter away from the rod. The force that has pushed the smoke particles away from the rod is an example of a thermophoretic force, as the mean free path of air at ambient conditions is 68 nm and the characteristic length scales are between 100-1000 nm. Thermodiffusion is labeled "positive" when particles move from a hot to cold region and "negative" when the reverse is true. Typically the heavier/larger species in a mixture exhibit positive thermophoretic behavior while the lighter/smaller species exhibit negative behavior. In addition to the sizes of the various types of particles and the steepness of the temperature gradient, the heat conductivity and heat absorption of the particles play a role. Recently, Braun and coworkers have suggested that the charge and entropy of the hydration shell of molecules play a major role for the thermophoresis of biomolecules in aqueous solutions. The quantitative description is given by: :\frac=\nabla\cdot( D\,\nabla \chi+ D_\, \chi(1-\chi)\,\nabla T) \chi particle concentration; D diffusion coefficient; and D_T the thermodiffusion coefficient. The quotient of both coefficients :S_T=\frac is called Soret coefficient. The thermophoresis factor has been calculated from molecular interaction potentials derived from known molecular models


Applications

The thermophoretic force has a number of practical applications. The basis for applications is that, because different particle types move differently under the force of the temperature gradient, the particle types can be separated by that force after they've been mixed together, or prevented from mixing if they're already separated. Impurity ions may move from the cold side of a
semiconductor wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serv ...
towards the hot side, since the higher temperature makes the transition structure required for atomic jumps more achievable. The diffusive flux may occur in either direction (either up or down the temperature gradient), dependent on the materials involved. Thermophoretic force has been used in commercial precipitators for applications similar to electrostatic precipitators. It is exploited in the manufacturing of
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a mea ...
in vacuum deposition processes. It can be important as a transport mechanism in
fouling Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms ( biofouling) or a non-living substance (inorganic or organic). Fouling is usually distinguished from other sur ...
. Thermophoresis has also been shown to have potential in facilitating drug discovery by allowing the detection of
aptamer Aptamers are short sequences of artificial DNA, RNA, XNA, or peptide that bind a specific target molecule, or family of target molecules. They exhibit a range of affinities ( KD in the pM to μM range), with little or no off-target bindin ...
binding by comparison of the bound versus unbound motion of the target molecule. This approach has been termed
microscale thermophoresis Microscale thermophoresis (MST) is a technology for the biophysical analysis of interactions between biomolecules. Microscale thermophoresis is based on the detection of a temperature-induced change in fluorescence of a target as a function of th ...
. Furthermore, thermophoresis has been demonstrated as a versatile technique for manipulating single biological macromolecules, such as genomic-length DNA, and
HIV The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune ...
virus in micro- and nanochannels by means of light-induced local heating. Thermophoresis is one of the methods used to separate different polymer particles in
field flow fractionation Field-flow fractionation, abbreviated FFF, is a separation technique which does not have a stationary phase. It is similar to liquid chromatography as it works on dilute solutions or suspensions of the solute. Separation is achieved by applying ...
.


History

Thermophoresis in gas mixtures was first observed and reported by John Tyndall in 1870 and further understood by John Strutt (Baron Rayleigh) in 1882. Thermophoresis in liquid mixtures was first observed and reported by
Carl Ludwig Carl Friedrich Wilhelm Ludwig (; 29 December 1816 – 23 April 1895) was a German physician and physiologist. His work as both a researcher and teacher had a major influence on the understanding, methods and apparatus used in almost all branches ...
in 1856 and further understood by Charles Soret in 1879.
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and li ...
wrote in 1873 concerning mixtures of different types of molecules (and this could include small
particulates Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The t ...
larger than molecules): :"This process of diffusion... goes on in gases and liquids and even in some solids.... The dynamical theory also tells us what will happen if molecules of different masses are allowed to knock about together. The greater masses will go slower than the smaller ones, so that, on an average, every molecule, great or small, will have the same energy of motion. The proof of this dynamical theorem, in which I claim the priority, has recently been greatly developed and improved by Dr. Ludwig Boltzmann." It has been analyzed theoretically by Sydney Chapman. Thermophoresis at solids interfaces was numerically discovered by Schoen et al. in 2006 and was experimentally confirmed by Barreiro et al. Negative thermophoresis in fluids was first noticed in 1967 by Dwyer in a theoretical solution, and the name was coined by Sone. Negative thermophoresis at solids interfaces was first observed by Leng et al. in 2016.


See also

*
Microscale thermophoresis Microscale thermophoresis (MST) is a technology for the biophysical analysis of interactions between biomolecules. Microscale thermophoresis is based on the detection of a temperature-induced change in fluorescence of a target as a function of th ...
*
Deposition (aerosol physics) In the physics of aerosols, deposition is the process by which aerosol particles collect or deposit themselves on solid surfaces, decreasing the concentration of the particles in the air. It can be divided into two sub-processes: ''dry'' and '' ...
*
Dufour effect The Dufour effect is the energy flux due to a mass concentration gradient occurring as a coupled effect of irreversible processes, named after L. Dufour. It is the reciprocal phenomenon to the Soret effect Thermophoresis (also thermomigration, the ...
*
Maxwell–Stefan diffusion The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Max ...


References


External links

* A short introduction to thermophoresis, including helpful animated graphics, is a
aerosols.wustl.edu
*{{YouTube, id=lCB1eCTcCbo, title=Thermophoresis of DNA in an aqueous solution
ternary mixtures

HCl

alkali bromides
Non-equilibrium thermodynamics Aerosols