Thermokarst
   HOME

TheInfoList



OR:

Thermokarst is a type of
terrain Terrain or relief (also topographical relief) involves the vertical and horizontal dimensions of land surface. The term bathymetry is used to describe underwater relief, while hypsometry studies terrain relative to sea level. The Latin wo ...
characterised by very irregular surfaces of marshy hollows and small
hummock In geology, a hummock is a small knoll or mound above ground.Bates, Robert L. and Julia A. Jackson, ed. (1984). “hummock.” Dictionary of Geological Terms, 3rd Ed. New York: Anchor Books. p. 241. They are typically less than in height and ...
s formed as
ice Ice is water frozen into a solid state, typically forming at or below temperatures of 0 degrees Celsius or Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaqu ...
-rich permafrost thaws. The land surface type occurs in
Arctic The Arctic ( or ) is a polar region located at the northernmost part of Earth. The Arctic consists of the Arctic Ocean, adjacent seas, and parts of Canada (Yukon, Northwest Territories, Nunavut), Danish Realm (Greenland), Finland, Iceland, N ...
areas, and on a smaller scale in mountainous areas such as the
Himalayas The Himalayas, or Himalaya (; ; ), is a mountain range in Asia, separating the plains of the Indian subcontinent from the Tibetan Plateau. The range has some of the planet's highest peaks, including the very highest, Mount Everest. Over 10 ...
and the Swiss Alps. These pitted surfaces resemble clusters of small lakes formed by dissolution of
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
in some karst areas, which is how they came to have "'' karst''" attached to their name, even though no limestone is actually present. Small domes that form on the surface due to
frost heaving Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated in ...
with the onset of winter are only temporary features. They collapse during the following summer thaw, leaving a small surface depression. Some ice lenses grow and form larger surface hummocks (" pingos") which can last for many years, and sometimes become covered with
grasses Poaceae () or Gramineae () is a large and nearly ubiquitous family of monocotyledonous flowering plants commonly known as grasses. It includes the cereal grasses, bamboos and the grasses of natural grassland and species cultivated in lawns ...
and
sedges The Cyperaceae are a family of graminoid (grass-like), monocotyledonous flowering plants known as sedges. The family is large, with some 5,500 known species described in about 90 genera, the largest being the "true sedges" genus ''Carex'' wit ...
, until they begin to thaw. These domed surfaces eventually collapse – either annually or after longer periods – and form depressions which become part of the uneven terrains included under the general category of ''thermokarst''. The formation of permafrost thaw lakes due to warming climate is a positive feedback loop, as methane, nitrous oxide and carbon dioxide are released as permafrost thaws, contributing to further climate warming. The
Batagaika crater The Batagaika crater is a thermokarst depression in the Chersky Range area. The biggest permafrost crater in the world, it administratively belongs to the Sakha Republic, Russia, and is in its Verkhoyansky District. Description The depression ...
in Siberia is an example of a large thermokarst depression.


Thermokarst lakes

A thermokarst lake, also called a ''thaw lake'', ''tundra lake'', ''thaw depression'', or ''tundra pond'', refers to a body of freshwater, usually shallow, that is formed in a depression formed by thawing ice-rich permafrost. A key indicator of thermokarst lakes is the occurrence of excess ground ice as well as having an ice content with greater than 30% by volume. Thermokarst lakes tend to form and disappear in a cyclical manner, resulting in a predictable life cycle (see "life cycle" below). Continued thawing of the permafrost substrate can lead to the drainage and eventual disappearance of thermokarst lakes, leaving them, in such cases, a geomorphologically temporary phenomenon, formed in response to a warming climate. These lakes are typically found in arctic and subarctic lowlands, including the western Canadian Arctic (e.g. Banks Island, Victoria island), the Alaskan coastal plain, interior Yukon Territory and the alluvial lowlands of northern Eurasia and Siberia. The presence of thaw lakes in a region results in a thermal disturbance as the water warms the ground. The depth of permafrost below a lake will generally be shallower and if the lake is of sufficient depth, a talik is present. The general morphology (shape, depth, circumference) is variable, with some thaw lakes oriented, meaning they are generally elongated in a specific direction. Though their formation mechanism has not been definitively proven, it is believed to be related to the prevailing winds or storms. The disturbance (of either kind) leads to overall warming and melting of ground ice, after which surface subsidence occurs allowing for water infiltration of either surface water or melted ground ice.


Lake life cycle


Initiation

The initiation of a thaw lake begins with the degradation of ice-rich permafrost. The natural inception of thermokarst lakes can be demarcated into two separate processes; whether in continuous or discontinuous permafrost. In continuous permafrost, water accumulates when ice veins and polygonal ground are present. Through discontinuous permafrost, it is when thaw occurs in palsas (frozen peat cores) or in lithalsas (mineral core mounds). Permafrost degradation is typically linked to a surface disturbance, either natural or artificial, in combination with site-specific factors, such as permafrost ice-content, ground temperature, etc.


Development/expansion

Development of thaw lakes tends to be slow at first, but once the average lake bottom temperature exceeds 0 °C the lake ceases freezing to the bottom and thaw becomes continuous. The lake grows as ice thaws, which may result in the slumping of shorelines or submergence of vegetation, which is why thaw lakes in the boreal forest tend to be surrounded by “''drunken trees''”. It should be specified that “drunken trees” (also known as ''drunken forests'') occur within Yedoma regimes. This feature is not present throughout all thermokarst regions. Upon expansion in this stage, thermokarst lakes often take on an elongated shape with ordered alignment in the long axis. If lakes form in an area of ice-rich permafrost, coalescence of several smaller lakes may occur, producing a larger body of water, magnifying the thermal disturbance. Development may be further facilitated by lateral bank erosion. Additionally, thermal abrasion of thermokarst lake edges can expand the lake size, as well as lake bottom subsidence. Oriented morphology of lakes can take on shapes such as “elliptical, egg-shaped, triangular, rectangular, clam-shaped, or D-shaped”, and commonly occur in terrain with sandy sediments. Polemic scholastic discussions pertaining to development of lakes’ shapes are commonplace throughout the literature on orientation and morphology of thermokarst lakes. However, there are clearly a multitude of reasons beyond wind movement only, that contribute to the shape of lakes. Grosse ''et al''. (2013) summarize endogenous and exogenous elements that are key factors in orientation including: * Redistribution of littoral shelves by wind creating insulation, * arrangement of polygonal ice-wedges producing thawing, and * erosion from fluvial channels causing inhomogeneous sediments.


Drainage

Before complete drainage, lake edges recede through
retrogressive thaw slumps Retrogressive thaw slumps (RTS), are a type of landslide that occur in the terrestrial Arctic's permafrost region of the circumpolar Northern Hemisphere when an ice-rich section thaws. RTSs develop quickly and can extend across several hectares m ...
(RTS) and subaerial debris flows. Actual drainage may be triggered by fluvial erosion or expansion of adjacent basins at inland locations. In coastal areas, drainage may be due to coastal retreat leading to thermal abrasion or erosion due to wave action. More gradual drainage (partial or complete) may be caused by local permafrost degradation and erosion. Lakes stop growing once drainage initiated, and eventually depressions are filled by sediments, aquatic plants or peat. Another option for the fate of a drained thaw lake is that the active layer surrounding the lake deepens to below water level once ground ice is exhausted, allowing for a residual lake to remain.


Gallery

Permafrost in Herschel Island 009.jpg, Thawing permafrost in
Herschel Island Herschel Island (french: Île d'Herschel; Inuit languages: ''Qikiqtaruk'') is an island in the Beaufort Sea (part of the Arctic Ocean), which lies off the coast of Yukon in Canada, of which it is administratively a part. It is Yukon's only ...
, Canada, 2013 Permafrost in Herschel Island 010.jpg, Thawing permafrost in
Herschel Island Herschel Island (french: Île d'Herschel; Inuit languages: ''Qikiqtaruk'') is an island in the Beaufort Sea (part of the Arctic Ocean), which lies off the coast of Yukon in Canada, of which it is administratively a part. It is Yukon's only ...
, Canada, 2013 Permafrost in Herschel Island 001.jpg, Thawing permafrost in
Herschel Island Herschel Island (french: Île d'Herschel; Inuit languages: ''Qikiqtaruk'') is an island in the Beaufort Sea (part of the Arctic Ocean), which lies off the coast of Yukon in Canada, of which it is administratively a part. It is Yukon's only ...
, Canada, 2013 Permafrost in Herschel Island 002.jpg, Thawing permafrost in
Herschel Island Herschel Island (french: Île d'Herschel; Inuit languages: ''Qikiqtaruk'') is an island in the Beaufort Sea (part of the Arctic Ocean), which lies off the coast of Yukon in Canada, of which it is administratively a part. It is Yukon's only ...
, Canada, 2013 Permafrost in Herschel Island 003.jpg, Thawing permafrost in
Herschel Island Herschel Island (french: Île d'Herschel; Inuit languages: ''Qikiqtaruk'') is an island in the Beaufort Sea (part of the Arctic Ocean), which lies off the coast of Yukon in Canada, of which it is administratively a part. It is Yukon's only ...
, Canada, 2013 Permafrost in Herschel Island 015.jpg, Permafrost and ice in
Herschel Island Herschel Island (french: Île d'Herschel; Inuit languages: ''Qikiqtaruk'') is an island in the Beaufort Sea (part of the Arctic Ocean), which lies off the coast of Yukon in Canada, of which it is administratively a part. It is Yukon's only ...
, Canada, 2012
See more photos at Wikimedia Commons - Thermokarst.


See also

*
Retrogressive thaw slumps Retrogressive thaw slumps (RTS), are a type of landslide that occur in the terrestrial Arctic's permafrost region of the circumpolar Northern Hemisphere when an ice-rich section thaws. RTSs develop quickly and can extend across several hectares m ...
* * * * *


References


External links

* * {{Periglacial environment Periglacial landforms Patterned grounds Permafrost