Theory of probability
   HOME

TheInfoList



OR:

Probability theory is the branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
concerned with
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, ...
. Although there are several different
probability interpretations The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one b ...
, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
, which assigns a measure taking values between 0 and 1, termed the
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more ge ...
, to a set of outcomes called the
sample space In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually den ...
. Any specified subset of the sample space is called an
event Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of ev ...
. Central subjects in probability theory include discrete and continuous
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s,
probability distributions In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
, and
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that ap ...
es (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability theory describing such behaviour are the
law of large numbers In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials shou ...
and the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themsel ...
. As a mathematical foundation for
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
, probability theory is essential to many human activities that involve quantitative analysis of data. Methods of probability theory also apply to descriptions of complex systems given only partial knowledge of their state, as in
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic b ...
or sequential estimation. A great discovery of twentieth-century
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
was the probabilistic nature of physical phenomena at atomic scales, described in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
.


History of probability

The modern mathematical theory of
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, ...
has its roots in attempts to analyze games of chance by
Gerolamo Cardano Gerolamo Cardano (; also Girolamo or Geronimo; french: link=no, Jérôme Cardan; la, Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath, whose interests and proficiencies ranged through those of mathematician, ...
in the sixteenth century, and by
Pierre de Fermat Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he ...
and
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pascal's earliest ...
in the seventeenth century (for example the " problem of points").
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists o ...
published a book on the subject in 1657. In the 19th century, what is considered the classical definition of probability was completed by
Pierre Laplace Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized ...
. Initially, probability theory mainly considered events, and its methods were mainly combinatorial. Eventually, analytical considerations compelled the incorporation of variables into the theory. This culminated in modern probability theory, on foundations laid by
Andrey Nikolaevich Kolmogorov Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Sovi ...
. Kolmogorov combined the notion of
sample space In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually den ...
, introduced by
Richard von Mises Richard Edler von Mises (; 19 April 1883 – 14 July 1953) was an Austrian scientist and mathematician who worked on solid mechanics, fluid mechanics, aerodynamics, aeronautics, statistics and probability theory. He held the position of Gordo ...
, and
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simila ...
and presented his
axiom system In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contain ...
for probability theory in 1933. This became the mostly undisputed axiomatic basis for modern probability theory; but, alternatives exist, such as the adoption of finite rather than countable additivity by
Bruno de Finetti Bruno de Finetti (13 June 1906 – 20 July 1985) was an Italian probabilist statistician and actuary, noted for the "operational subjective" conception of probability. The classic exposition of his distinctive theory is the 1937 "La prévision: ...
.


Treatment

Most introductions to probability theory treat discrete probability distributions and continuous probability distributions separately. The measure theory-based treatment of probability covers the discrete, continuous, a mix of the two, and more.


Motivation

Consider an
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
that can produce a number of outcomes. The set of all outcomes is called the ''
sample space In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually den ...
'' of the experiment. The ''
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
'' of the sample space (or equivalently, the event space) is formed by considering all different collections of possible results. For example, rolling an honest die produces one of six possible results. One collection of possible results corresponds to getting an odd number. Thus, the subset is an element of the power set of the sample space of die rolls. These collections are called ''events''. In this case, is the event that the die falls on some odd number. If the results that actually occur fall in a given event, that event is said to have occurred. Probability is a way of assigning every "event" a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event ) be assigned a value of one. To qualify as a
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events that contain no common results, e.g., the events , , and are all mutually exclusive), the probability that any of these events occurs is given by the sum of the probabilities of the events. The probability that any one of the events , , or will occur is 5/6. This is the same as saying that the probability of event is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event has a probability of 1/6, and the event has a probability of 1, that is, absolute certainty. When doing calculations using the outcomes of an experiment, it is necessary that all those
elementary event In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. Using set theory terminology, an elementary event is a singleton. Elementary events a ...
s have a number assigned to them. This is done using a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
. A random variable is a function that assigns to each elementary event in the sample space a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
. This function is usually denoted by a capital letter. In the case of a die, the assignment of a number to a certain elementary events can be done using the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, un ...
. This does not always work. For example, when flipping a coin the two possible outcomes are "heads" and "tails". In this example, the random variable ''X'' could assign to the outcome "heads" the number "0" (X(heads)=0) and to the outcome "tails" the number "1" (X(tails)=1).


Discrete probability distributions

deals with events that occur in
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
sample spaces. Examples: Throwing
dice Dice (singular die or dice) are small, throwable objects with marked sides that can rest in multiple positions. They are used for generating random values, commonly as part of tabletop games, including dice games, board games, role-playing ...
, experiments with decks of cards,
random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
, and tossing
coin A coin is a small, flat (usually depending on the country or value), round piece of metal or plastic used primarily as a medium of exchange or legal tender. They are standardized in weight, and produced in large quantities at a mint in order ...
s : Initially the probability of an event to occur was defined as the number of cases favorable for the event, over the number of total outcomes possible in an equiprobable sample space: see Classical definition of probability. For example, if the event is "occurrence of an even number when a die is rolled", the probability is given by \tfrac=\tfrac, since 3 faces out of the 6 have even numbers and each face has the same probability of appearing. : The modern definition starts with a finite or countable set called the
sample space In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually den ...
, which relates to the set of all ''possible outcomes'' in classical sense, denoted by \Omega. It is then assumed that for each element x \in \Omega\,, an intrinsic "probability" value f(x)\, is attached, which satisfies the following properties: # f(x)\in ,1mboxx\in \Omega\,; # \sum_ f(x) = 1\,. That is, the probability function ''f''(''x'') lies between zero and one for every value of ''x'' in the sample space ''Ω'', and the sum of ''f''(''x'') over all values ''x'' in the sample space ''Ω'' is equal to 1. An is defined as any
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
E\, of the sample space \Omega\,. The of the event E\, is defined as :P(E)=\sum_ f(x)\,. So, the probability of the entire sample space is 1, and the probability of the null event is 0. The function f(x)\, mapping a point in the sample space to the "probability" value is called a abbreviated as . The modern definition does not try to answer how probability mass functions are obtained; instead, it builds a theory that assumes their existence.


Continuous probability distributions

deals with events that occur in a continuous sample space. : The classical definition breaks down when confronted with the continuous case. See Bertrand's paradox. : If the sample space of a random variable ''X'' is the set of
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every re ...
(\mathbb) or a subset thereof, then a function called the (or ) F\, exists, defined by F(x) = P(X\le x) \,. That is, ''F''(''x'') returns the probability that ''X'' will be less than or equal to ''x''. The cdf necessarily satisfies the following properties. # F\, is a
monotonically non-decreasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of orde ...
, right-continuous function; # \lim_ F(x)=0\,; # \lim_ F(x)=1\,. If F\, is
absolutely continuous In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central ope ...
, i.e., its derivative exists and integrating the derivative gives us the cdf back again, then the random variable ''X'' is said to have a or or simply f(x)=\frac\,. For a set E \subseteq \mathbb, the probability of the random variable ''X'' being in E\, is :P(X\in E) = \int_ dF(x)\,. In case the probability density function exists, this can be written as :P(X\in E) = \int_ f(x)\,dx\,. Whereas the ''pdf'' exists only for continuous random variables, the ''cdf'' exists for all random variables (including discrete random variables) that take values in \mathbb\,. These concepts can be generalized for multidimensional cases on \mathbb^n and other continuous sample spaces.


Measure-theoretic probability theory

The ''
raison d'être Raison d'être is a French expression commonly used in English, meaning "reason for being" or "reason to be". Raison d'être may refer to: Music * Raison d'être (band), a Swedish dark-ambient-industrial-drone music project * ''Raison D'être' ...
'' of the measure-theoretic treatment of probability is that it unifies the discrete and the continuous cases, and makes the difference a question of which measure is used. Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2. It can still be studied to some extent by considering it to have a pdf of (\delta + \varphi(x))/2, where \delta /math> is the
Dirac delta function In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the enti ...
. Other distributions may not even be a mix, for example, the
Cantor distribution The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function. This distribution has neither a probability density function nor a probability mass function, since although its cumulat ...
has no positive probability for any single point, neither does it have a density. The modern approach to probability theory solves these problems using
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simila ...
to define the
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
: Given any set \Omega\, (also called ) and a
σ-algebra In mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set ''X'' is a collection Σ of subsets of ''X'' that includes the empty subset, is closed under complement, and is closed under countable unions and countabl ...
\mathcal\, on it, a measure P\, defined on \mathcal\, is called a if P(\Omega)=1.\, If \mathcal\, is the
Borel σ-algebra In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named ...
on the set of real numbers, then there is a unique probability measure on \mathcal\, for any cdf, and vice versa. The measure corresponding to a cdf is said to be by the cdf. This measure coincides with the pmf for discrete variables and pdf for continuous variables, making the measure-theoretic approach free of fallacies. The ''probability'' of a set E\, in the σ-algebra \mathcal\, is defined as :P(E) = \int_ \mu_F(d\omega)\, where the integration is with respect to the measure \mu_F\, induced by F\,. Along with providing better understanding and unification of discrete and continuous probabilities, measure-theoretic treatment also allows us to work on probabilities outside \mathbb^n, as in the theory of
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that ap ...
es. For example, to study
Brownian motion Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insi ...
, probability is defined on a space of functions. When it's convenient to work with a dominating measure, the Radon-Nikodym theorem is used to define a density as the Radon-Nikodym derivative of the probability distribution of interest with respect to this dominating measure. Discrete densities are usually defined as this derivative with respect to a counting measure over the set of all possible outcomes. Densities for
absolutely continuous In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central ope ...
distributions are usually defined as this derivative with respect to the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wi ...
. If a theorem can be proved in this general setting, it holds for both discrete and continuous distributions as well as others; separate proofs are not required for discrete and continuous distributions.


Classical probability distributions

Certain random variables occur very often in probability theory because they well describe many natural or physical processes. Their distributions, therefore, have gained ''special importance'' in probability theory. Some fundamental ''discrete distributions'' are the discrete uniform, Bernoulli,
binomial Binomial may refer to: In mathematics *Binomial (polynomial), a polynomial with two terms *Binomial coefficient, numbers appearing in the expansions of powers of binomials *Binomial QMF, a perfect-reconstruction orthogonal wavelet decomposition * ...
, negative binomial, Poisson and
geometric distribution In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number ''X'' of Bernoulli trials needed to get one success, supported on the set \; * ...
s. Important ''continuous distributions'' include the continuous uniform, normal,
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value *Expo ...
,
gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter r ...
and
beta distribution In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval , 1in terms of two positive parameters, denoted by ''alpha'' (''α'') and ''beta'' (''β''), that appear as ...
s.


Convergence of random variables

In probability theory, there are several notions of convergence for
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s. They are listed below in the order of strength, i.e., any subsequent notion of convergence in the list implies convergence according to all of the preceding notions. ;Weak convergence: A sequence of random variables X_1,X_2,\dots,\, converges to the random variable X\, if their respective cumulative ''distribution functions'' F_1,F_2,\dots\, converge to the cumulative distribution function F\, of X\,, wherever F\, is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
. Weak convergence is also called . :Most common shorthand notation: \displaystyle X_n \, \xrightarrow \, X ;Convergence in probability: The sequence of random variables X_1,X_2,\dots\, is said to converge towards the random variable X\, if \lim_P\left(\left, X_n-X\\geq\varepsilon\right)=0 for every ε > 0. :Most common shorthand notation: \displaystyle X_n \, \xrightarrow \, X ;Strong convergence: The sequence of random variables X_1,X_2,\dots\, is said to converge towards the random variable X\, if P(\lim_ X_n=X)=1. Strong convergence is also known as . :Most common shorthand notation: \displaystyle X_n \, \xrightarrow \, X As the names indicate, weak convergence is weaker than strong convergence. In fact, strong convergence implies convergence in probability, and convergence in probability implies weak convergence. The reverse statements are not always true.


Law of large numbers

Common intuition suggests that if a fair coin is tossed many times, then ''roughly'' half of the time it will turn up ''heads'', and the other half it will turn up ''tails''. Furthermore, the more often the coin is tossed, the more likely it should be that the ratio of the number of ''heads'' to the number of ''tails'' will approach unity. Modern probability theory provides a formal version of this intuitive idea, known as the . This law is remarkable because it is not assumed in the foundations of probability theory, but instead emerges from these foundations as a theorem. Since it links theoretically derived probabilities to their actual frequency of occurrence in the real world, the law of large numbers is considered as a pillar in the history of statistical theory and has had widespread influence. The (LLN) states that the sample average :\overline_n=\frac1n of a sequence of independent and identically distributed random variables X_k converges towards their common expectation \mu, provided that the expectation of , X_k, is finite. It is in the different forms of convergence of random variables that separates the ''weak'' and the ''strong'' law of large numbers :Weak law: \displaystyle \overline_n \, \xrightarrow \, \mu for n \to \infty :Strong law: \displaystyle \overline_n \, \xrightarrow \, \mu for n \to \infty . It follows from the LLN that if an event of probability ''p'' is observed repeatedly during independent experiments, the ratio of the observed frequency of that event to the total number of repetitions converges towards ''p''. For example, if Y_1,Y_2,...\, are independent Bernoulli random variables taking values 1 with probability ''p'' and 0 with probability 1-''p'', then \textrm(Y_i)=p for all ''i'', so that \bar Y_n converges to ''p''
almost surely In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0. ...
.


Central limit theorem

The central limit theorem (CLT) explains the ubiquitous occurrence of the
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
in nature, and this theorem, according to David Williams, "is one of the great results of mathematics." David Williams, "Probability with martingales", Cambridge 1991/2008 The theorem states that the
average In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7 ...
of many independent and identically distributed random variables with finite variance tends towards a normal distribution ''irrespective'' of the distribution followed by the original random variables. Formally, let X_1,X_2,\dots\, be independent random variables with
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ar ...
\mu and
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
\sigma^2 > 0.\, Then the sequence of random variables :Z_n=\frac\, converges in distribution to a standard normal random variable. For some classes of random variables, the classic central limit theorem works rather fast, as illustrated in the
Berry–Esseen theorem In probability theory, the central limit theorem states that, under certain circumstances, the probability distribution of the scaled mean of a random sample converges to a normal distribution as the sample size increases to infinity. Under strong ...
. For example, the distributions with finite first, second, and third moment from the
exponential family In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate ...
; on the other hand, for some random variables of the heavy tail and fat tail variety, it works very slowly or may not work at all: in such cases one may use the Generalized Central Limit Theorem (GCLT).


See also

* Catalog of articles in probability theory *
Expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
and
Variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
*
Fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completel ...
and
Fuzzy measure theory In mathematics, fuzzy measure theory considers generalized measures in which the additive property is replaced by the weaker property of monotonicity. The central concept of fuzzy measure theory is the fuzzy measure (also ''capacity'', see ), whic ...
*
Glossary of probability and statistics This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary ...
*
Likelihood function The likelihood function (often simply called the likelihood) represents the probability of random variable realizations conditional on particular values of the statistical parameters. Thus, when evaluated on a given sample, the likelihood functi ...
* List of probability topics * List of publications in statistics * List of statistical topics *
Notation in probability Probability theory and statistics have some commonly used conventions, in addition to standard mathematical notation and mathematical symbols. Probability theory * Random variables are usually written in upper case roman letters: ''X'', ''Y ...
*
Predictive modelling Predictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive mod ...
*
Probabilistic logic Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A diffic ...
– A combination of probability theory and logic * Probabilistic proofs of non-probabilistic theorems *
Probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
*
Probability axioms The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probabil ...
*
Probability interpretations The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one b ...
*
Probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
*
Statistical independence Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of o ...
*
Statistical physics Statistical physics is a branch of physics that evolved from a foundation of statistical mechanics, which uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approxim ...
* Subjective logic * Probability of the union of pairwise independent events


References


Citations


Sources

* :: The first major treatise blending calculus with probability theory, originally in French: ''Théorie Analytique des Probabilités''. * :: An English translation by Nathan Morrison appeared under the title ''Foundations of the Theory of Probability'' (Chelsea, New York) in 1950, with a second edition in 1956. * *
Olav Kallenberg Olav Kallenberg (born 1939) is a probability theorist known for his work on exchangeable stochastic processes and for his graduate-level textbooks and monographs. Kallenberg is a professor of mathematics at Auburn University in Alabama in the US ...
; ''Foundations of Modern Probability,'' 2nd ed. Springer Series in Statistics. (2002). 650 pp. * :: A lively introduction to probability theory for the beginner. * Olav Kallenberg; ''Probabilistic Symmetries and Invariance Principles''. Springer -Verlag, New York (2005). 510 pp. * {{DEFAULTSORT:Probability Theory id:Peluang (matematika)