Tetrose
   HOME

TheInfoList



OR:

A tetrose is a monosaccharide with 4
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
atoms. They have either an
aldehyde In organic chemistry, an aldehyde () is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl grou ...
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the re ...
in position 1 (aldotetroses) or a ketone functional group in position 2 (ketotetroses). File:DErythrose Fischer.svg , D-Erythrose File:DThreose Fischer.svg , D-Threose File:DErythrulose Fischer.svg , D-Erythrulose The aldotetroses have two chiral centers (
asymmetric carbon An asymmetric carbon atom (chiral carbon) is a carbon atom that is attached to four different types of atoms or groups of atoms. Le Bel-van't Hoff rule states that the number of stereoisomers of an organic compound is 2n, where n represents the num ...
atoms) and so 4 different
stereoisomers In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms ...
are possible. There are two naturally occurring stereoisomers, the enantiomers of
erythrose Erythrose is a tetrose saccharide with the chemical formula C4H8O4. It has one aldehyde group, and is thus part of the aldose family. The natural isomer is D-erythrose; it is a diastereomer of D -threose. Erythrose was first isolated in 1849 ...
and
threose Threose is a four-carbon monosaccharide with molecular formula C4H8O4. It has a terminal aldehyde group rather than a ketone in its linear chain, and so is considered part of the aldose family of monosaccharides. The threose name can be used ...
having the D configuration but not the L enantiomers. The ketotetroses have one chiral center and, therefore, two possible stereoisomers:
erythrulose D-Erythrulose (also known as erythrulose) is a tetrose carbohydrate with the chemical formula C4 H8 O4. It has one ketone group and so is part of the ketose family. It is used in some self-tanning cosmetics, in general, combined with dihydrox ...
(L- and D-form). Again, only the D enantiomer is naturally occurring.


Biological Functions

There are a few known ways that tetrose sugars are used in nature. Some are seen in metabolic pathways and others are known to affect certain enzymes.


Intermediates in the Pentose Phosphate Pathway

One of the metabolic pathways that a tetrose is involved in is the
Pentose Phosphate Pathway The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt and the HMP Shunt) is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (5-carbon sugars) as well as ribose 5-pho ...
. In the Pentose Phosphate Pathway, there is an oxidative stage and a non-oxidative stage. A tetrose sugar,
D-erythrose Erythrose is a tetrose saccharide with the chemical formula C4H8O4. It has one aldehyde group, and is thus part of the aldose family. The natural isomer is D-erythrose; it is a diastereomer of Threose, DThreose, -threose. Erythrose was first i ...
, is utilized in the non-oxidative stage, where D-ribulose 5-phosphate is generated into a 6 carbon sugar (
fructose 6-phosphate Fructose 6-phosphate (sometimes called the Neuberg ester) is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. It is one of several possible fructosephosphates. The β-D-form of this compound is very common in cells. ...
) and a 3 carbon sugar (
glyceraldehyde 3-phosphate Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms.Nelson, D ...
). Both of these molecules can be used elsewhere in the body. D-erythrose 4-phosphate is generated as a product of a reaction called transaldolation. In the Pentose Phosphate Pathway, a transaldolase removes the first 3 carbon molecules of sedoheptulose 7-phosphate and places them onto a glyceraldehyde 3-phosphate. The transaldolase utilizes a
Schiff base In organic chemistry, a Schiff base (named after Hugo Schiff) is a compound with the general structure ( = alkyl or aryl, but not hydrogen). They can be considered a sub-class of imines, being either secondary ketimines or secondary aldimine ...
to perform a reverse
aldol reaction The aldol reaction is a means of forming carbon–carbon bonds in organic chemistry. Discovered independently by the Russian chemist Alexander Borodin in 1869 and by the French chemist Charles-Adolphe Wurtz in 1872, the reaction combines two c ...
and a forward aldol reaction in its mechanism, generating an erythrose 4-phosphate and
fructose 6-phosphate Fructose 6-phosphate (sometimes called the Neuberg ester) is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. It is one of several possible fructosephosphates. The β-D-form of this compound is very common in cells. ...
. The erythrose 4-phosphate is an important intermediate in the Pentose Phosphate Pathway because it is then used in the final non-oxidative step of the pathway. The final non-oxidative step of the pathway is a transketolase reaction. A transketolase utilizes a
thiamine pyrophosphate Thiamine pyrophosphate (TPP or ThPP), or thiamine diphosphate (ThDP), or cocarboxylase is a thiamine (vitamin B1) derivative which is produced by the enzyme thiamine diphosphokinase. Thiamine pyrophosphate is a cofactor that is present in all liv ...
, or TPP cofactor, to break the unfavorable bond between the carbon in a carbonyl and the
alpha carbon In the nomenclature of organic chemistry, a locant is a term to indicate the position of a functional group or substituent within a molecule. Numeric locants The International Union of Pure and Applied Chemistry (IUPAC) recommends the us ...
. TPP attacks a xylulose 5-phosphate molecule and facilitates the cleavage of the bond between the C2 (carbonyl carbon) and the C3 (alpha carbon), where glyceraldehyde 3-phosphate is released. Then, C2 can attack erythrose 4-phosphate, which forms fructose 6-phosphate. Both of the products of this reaction can enter the gluconeogenesis pathway to regenerate
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
.


Inhibitors of Enzymes

A tetrose diphosphate molecule, D-threose 2,4-diphosphate, was discovered to be an inhibitor of glyceraldehyde 3-phosphate dehydrogenase. Glyceraldehyde 3-phosphate dehydrogenase is the sixth enzyme used in the glycolysis pathway, and its function is to convert glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate. This tetrose diphosphate molecule inhibits the G3P dehydrogenase from performing catalysis because it oxidizes the enzyme by binding to it at the active site. When tetrose diphosphate is bound to the enzyme, the active site of the enzyme is blocked; therefore phosphorolysis of G3P is unable to occur. High concentrations of tetrose diphosphate must be used to outcompete the substrate, G3P, and block the function of G3P dehydrogenase. With the function of glyceraldehyde 3-phosphate dehydrogenase lost, glycolysis cannot proceed. D-erythrose 4-phosphate was found to be an inhibitor of
phosphoglucose isomerase Glucose-6-phosphate isomerase (GPI), alternatively known as phosphoglucose isomerase/phosphoglucoisomerase (PGI) or phosphohexose isomerase (PHI), is an enzyme ( ) that in humans is encoded by the ''GPI'' gene on chromosome 19. This gene enc ...
. Phosphoglucose isomerase is the second enzyme in the glycolysis pathway, and its role is to convert
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way ...
into fructose 6-phosphate. In both of these cases, the tetrose is an inhibitor of an enzyme in the glycolysis pathway, preventing it from proceeding onward.


References

{{biochem-stub