Dioxygenases
   HOME

TheInfoList



OR:

Dioxygenases are
oxidoreductase In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually ...
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s. Aerobic life, from simple single-celled
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
species to complex
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
organisms, has evolved to depend on the oxidizing power of
dioxygen There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are: * ...
in various metabolic pathways. From energetic
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms ...
(ATP) generation to
xenobiotic A xenobiotic is a chemical substance found within an organism that is not naturally produced or expected to be present within the organism. It can also cover substances that are present in much higher concentrations than are usual. Natural compo ...
degradation, the use of dioxygen as a biological
oxidant An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxi ...
is widespread and varied in the exact mechanism of its use. Enzymes employ many different schemes to use dioxygen, and this largely depends on the substrate and reaction at hand.


Comparison with monooxygenases

In the
monooxygenase Monooxygenases are enzymes that incorporate one hydroxyl group (−OH) into substrates in many metabolic pathways. In this reaction, the two atoms of dioxygen are reduced to one hydroxyl group and one H2O molecule by the concomitant oxidation o ...
s, only a single atom of dioxygen is incorporated into a substrate with the other being reduced to a water molecule. The dioxygenases () catalyze the oxidation of a substrate without the reduction of one oxygen atom from dioxygen into a water molecule. However, this definition is ambiguous because it does not take into account how many substrates are involved in the reaction. The majority of dioxygenases fully incorporate dioxygen into a single substrate, and a variety of cofactor schemes are utilized to achieve this. For example, in the α-ketoglutarate-dependent enzymes, one atom of dioxygen is incorporated into two substrates, with one always being α-ketoglutarate, and this reaction is brought about by a mononuclear iron center.


Iron-containing enzymes

The most widely observed cofactor involved in dioxygenation reactions is
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, but the
catalytic Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
scheme employed by these iron-containing enzymes is highly diverse. Iron-containing dioxygenases can be subdivided into three classes on the basis of how iron is incorporated into the active site: those employing a mononuclear iron center, those containing a Rieske Fe-2Scluster, and those utilizing a
heme Heme, or haem (pronounced / hi:m/ ), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver. In biochemical terms, heme is a coordination complex "consis ...
prosthetic group.


Mononuclear iron dioxygenases

The mononuclear iron dioxygenases, or non-
heme Heme, or haem (pronounced / hi:m/ ), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver. In biochemical terms, heme is a coordination complex "consis ...
iron-dependent dioxygenases as they are also termed, all utilize a single catalytic iron to incorporate either one or both atoms of dioxygen into a substrate. Despite this common oxygenation event, the mononuclear iron dioxygenases are diverse in how dioxygen activation is used to promote certain chemical reactions. For instance, carbon-carbon bond cleavage, fatty acid hydroperoxidation, carbon-sulfur bond cleavage, and thiol oxidation are all reactions catalyzed by mononuclear iron dioxygenases. Most mononuclear iron dioxygenases are members of the
cupin superfamily The cupin superfamily is a diverse superfamily of proteins named after its conserved barrel domain (''cupa'' being the Latin term for a small barrel). The superfamily includes a wide variety of enzymes as well as non-enzymatic seed storage p ...
in which the overall domain structure is described as a six-stranded β-barrel fold (or jelly roll motif). At the center this barrel structure is a metal ion, most commonly ferrous iron, whose coordination environment is frequently provided by residues in two partially conserved structural motifs: G(X)5HXH(X)3-4E(X)6G and G(X)5-7PXG(X)2H(X)3N. Two important groups of mononuclear, non-heme iron dioxygenases are catechol dioxygenases and 2-oxoglutarate (2OG)-dependent dioxygenases. The catechol dioxygenases, some of the most well-studied dioxygenase enzymes, use dioxygen to cleave a carbon-carbon bond of an aromatic
catechol Catechol ( or ), also known as pyrocatechol or 1,2-dihydroxybenzene, is a toxic organic compound with the molecular formula . It is the ''ortho'' isomer of the three isomeric benzenediols. This colorless compound occurs naturally in trace amoun ...
ring system. Catechol dioxygenases are further classified as being “extradiol” or “intradiol,” and this distinction is based on mechanistic differences in the reactions (figures 1 & 2). Intradiol enzymes cleave the carbon-carbon bond between the two hydroxyl groups. The active ferric center is coordinated by four protein ligands—two
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the ...
and two tyrosinate residues—in a trigonal bipyramidal manner with a water molecule occupying the fifth coordination site. Once a catecholate substrate binds to the metal center in a bidentate fashion through the deprotonated hydroxyl groups, the ferric iron “activates” the substrate by means of abstracting an electron to produce a
radical Radical may refer to: Politics and ideology Politics * Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe an ...
on the substrate. This then allows for reaction with dioxygen and subsequent intradiol cleavage to occur through a cyclic anhydride intermediate. Extradiol members utilize ferrous iron as the active redox state, and this center is commonly coordinated octahedrally through a 2-His-1-Glu motif with labile water ligands occupying empty positions. Once a substrate binds to the ferrous center, this promotes dioxygen binding and subsequent activation. This activated oxygen species then proceeds to react with the substrate ultimately cleaving the carbon-carbon bond adjacent to the hydroxyl groups through the formation of an α-keto lactone intermediate. In the 2OG-dependent dioxygenases, ferrous iron ( Fe(II)) is also coordinated by a (His)2(Glu/Asp)1 "facial triad" motif. Bidentate coordination of 2OG and water completes a pseudo-octahedral coordination sphere. Following substrate binding, the water ligand is released, yielding an open coordination site for oxygen activation. Upon oxygen binding, a poorly understood transformation occurs during which 2OG is oxidatively decarboxylated to succinate and the O-O bond is cleaved to form a Fe(IV)-oxo ( ferryl) intermediate. This powerful oxidant is then utilized to carry out various reactions, including hydroxylation, halogenation, and demethylation. In the best characterized case, the hydroxylases, the ferryl intermediate abstracts a hydrogen atom from the target position of the substrate, yielding a substrate radical and Fe(III)-OH. This radical then couples to the hydroxide ligand, producing the hydroxylated product and the Fe(II) resting state of the enzyme.


Rieske dioxygenases

The Rieske dioxygenases catalyze the cis-dihydroxylation of arenes to cis-dihydro-diol products. These enzymes are prominently found in soil bacteria such as ''
Pseudomonas ''Pseudomonas'' is a genus of Gram-negative, Gammaproteobacteria, belonging to the family Pseudomonadaceae and containing 191 described species. The members of the genus demonstrate a great deal of metabolic diversity and consequently are able t ...
'', and their reactions constitute the initial step in aromatic hydrocarbon biodegradation. Rieske dioxygenases are structurally more complex than other dioxygenases due to the need for an efficient electron transfer pathway (figure 2) to mediate the additional, simultaneous two-electron reduction of the aromatic substrate. A catalytically-competent Rieske dioxygenase has three components: an NADH-dependent FAD reductase, a
ferredoxin Ferredoxins (from Latin ''ferrum'': iron + redox, often abbreviated "fd") are iron–sulfur proteins that mediate electron transfer in a range of metabolic reactions. The term "ferredoxin" was coined by D.C. Wharton of the DuPont Co. and applied t ...
with two Fe-2SRieske clusters, and an α3β3 oxygenase with each α-subunit containing a mononuclear iron center and a Fe-2SRieske cluster. Within each α-subunit, the iron-sulfur cluster and mononuclear iron center are separated by a distance of some ~43 Å, much too far for efficient
electron transfer Electron transfer (ET) occurs when an electron relocates from an atom or molecule to another such chemical entity. ET is a mechanistic description of certain kinds of redox reactions involving transfer of electrons. Electrochemical processes ar ...
to occur. Instead, it is proposed electron transfer is mediated through these two centers in adjacent subunits, that the iron-sulfur cluster of one subunit transfers electrons to the mononuclear iron center of the adjacent subunit which is conveniently separated by ~12 Å. While this distance would appear optimal for efficient electron transfer, replacement of the bridging aspartate residue causes a loss of enzyme function, suggesting that electron transfer instead proceeds through the hydrogen-bonding network held in place by this aspartate residue. The mechanistic picture for this class of dioxygenases is not yet clear, but there is evidence supporting an iron(III) hydroperoxy intermediate in the reaction pathway. This species could represent the active oxidant, or it could undergo hemolytic O-O bond cleavage to yield an iron(V)-oxo intermediate as the working oxidizing agent. The Rieske dioxygenase are a powerful class of redox-active enzymes, and reactions such as sulfoxidation, desaturation, and benzylic oxidation have been reported in addition to dioxygenation.


Heme-containing dioxygenases

While most iron-dependent dioxygenases utilize a non-heme iron cofactor, the oxidation of L-(and D-)tryptophan to N-formylkynurenine is catalyzed by either
tryptophan 2,3-dioxygenase In enzymology, tryptophan 2,3-dioxygenase () is a heme enzyme that catalyzes the oxidation of -tryptophan (-Trp) to ''N''-formyl--kynurenine, as the first and rate-limiting step of the kynurenine pathway. :-tryptophan + O2 ''N''-formyl--kynuren ...
(TDO) or
indoleamine 2,3-dioxygenase Indoleamine-pyrrole 2,3-dioxygenase (IDO or INDO ) is a heme-containing enzyme physiologically expressed in a number of tissues and cells, such as the small intestine, lungs, female genital tract or placenta. In humans is encoded by the ''IDO1' ...
(IDO), which are heme dioxygenases that utilize iron coordinated by a heme B prosthetic group. While these dioxygenases are of interest in part because they uniquely use heme for catalysis, they are also of interest due to their importance in
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic ...
regulation in the cell, which has numerous physiological implications. The initial association of the substrate with the dioxygen-iron in the enzyme active site is thought to either proceed via radical or electrophilic addition, requiring either ferrous iron or ferric iron, respectively. While the exact reaction mechanism for the heme-dependent dioxygenases is still under debate, it is postulated that the reaction proceeds through either a dioxetane or Criegee mechanism (figures 4, 5).


Cambialistic dioxygenases

While iron is by far the most prevalent cofactor used for enzymatic dioxygenation, it is not required by all dioxygenases for catalysis. Quercetin 2,3-dioxygenase (quercetinase, QueD) catalyzes the dioxygenolytic cleavage of
quercetin Quercetin is a plant flavonol from the flavonoid group of polyphenols. It is found in many fruits, vegetables, leaves, seeds, and grains; capers, red onions, and kale are common foods containing appreciable amounts of it. It has a bitter flavor ...
to 2-protocatechuoylphloroglucinolcarboxylic acid and
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simpl ...
. The most characterized enzyme, from
Aspergillus ' () is a genus consisting of several hundred mold species found in various climates worldwide. ''Aspergillus'' was first catalogued in 1729 by the Italian priest and biologist Pier Antonio Micheli. Viewing the fungi under a microscope, Mic ...
japonicus, requires the presence of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
, and bacterial quercetinases have been discovered that are quite promiscuous (cambialistic) in their requirements of a metal center, with varying degrees of activity reported with substitution of
divalent In chemistry, the valence (US spelling) or valency (British spelling) of an chemical element, element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, ...
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
, iron,
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
and copper. (Quercetin, role in metabolism). Acireductone (1,2-dihydroxy-5-(methylthio)pent-1-en-3-one) dioxygenase (ARD) is found in both
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
s and
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
s. ARD enzymes from most species bind ferrous iron and catalyze the oxidation of acireductone to 4-(methylthio)-2-oxobutanoate, the α-keto acid of
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical ...
, and
formic acid Formic acid (), systematically named methanoic acid, is the simplest carboxylic acid, and has the chemical formula HCOOH and structure . It is an important intermediate in chemical synthesis and occurs naturally, most notably in some ants. Est ...
. However, ARD from ''
Klebsiella oxytoca ''Klebsiella oxytoca'' is a Gram-negative, rod-shaped bacterium that is closely related to '' K. pneumoniae'', from which it is distinguished by being indole-positive; it also has slightly different growth characteristics in that it is able to gr ...
'' catalyzes an additional reaction when nickel(II) is bound: it instead produces 3-(methylthio)propionate, formate, and carbon monoxide from the reaction of acireductone with dioxygen. The activity of Fe-ARD is closely interwoven with the methionine salvage pathway, in which the methylthioadenosine product of cellular
S-Adenosyl methionine ''S''-Adenosyl methionine (SAM), also known under the commercial names of SAMe, SAM-e, or AdoMet, is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throug ...
(SAM) reactions is eventually converted to acireductone. While the exact role of Ni-ARD is not known, it is suspected to help regulate methionine levels by acting as a shunt in the salvage pathway. This ''K. oxytoca'' enzyme represents a unique example whereby the metal ion present dictates which reaction is catalyzed. The quercetinases and ARD enzymes all are members of the
cupin superfamily The cupin superfamily is a diverse superfamily of proteins named after its conserved barrel domain (''cupa'' being the Latin term for a small barrel). The superfamily includes a wide variety of enzymes as well as non-enzymatic seed storage p ...
, to which the mononuclear iron enzymes also belong. The metal coordination scheme for the QueD enzymes is either a 3-His or 3-His-1-Glu with the exact arrangement being organism-specific. The ARD enzymes all
chelate Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
the catalytic metal (either Ni or Fe) through the 3-His-1-Glu motif. In these dioxygenases, the coordinating
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
are provided by both of the typical cupin motifs. In the ARD enzymes, the metal exists in an octahedral arrangement with the three
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the ...
residues comprising a facial triad. The bacterial quercetinase metal centers typically have a
trigonal bipyramidal In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. This is one geometry for which the bond angles surrounding the central atom are not iden ...
or octahedral coordination environment when there are four protein ligands; the metal centers of the copper-dependent QueD enzymes possesses a distorted tetrahedral geometry in which only the three conserved histidine residues provide coordination ligands. Empty coordination sites in all metal centers are occupied by aqua ligands until these are displaced by the incoming substrate. The ability of these dioxygenases to retain activity in the presence of other metal cofactors with wide ranges of
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
potentials suggests the metal center does not play an active role in the activation of dioxygen. Rather, it is thought the metal center functions to hold the substrate in the proper geometry for it to react with dioxygen. In this respect, these enzymes are reminiscent of the intradiol catechol dioxygenases whereby the metal centers activate the substrate for subsequent reaction with dioxygen.


Cofactor-independent dioxygenases

Dioxygenases that catalyze reactions without the need for a cofactor are much more rare in nature than those that do require them. Two dioxygenases, 1H-3-hydroxy-4-oxo-quinoline 2,4-dioxygenase (QDO) and 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HDO), have been shown to require neither an organic or metal cofactor. These enzymes catalyze the degradation of
quinolone Quinolone may refer to: * 2-Quinolone * 4-Quinolone * Quinolone antibiotic A quinolone antibiotic is a member of a large group of broad-spectrum bacteriocidals that share a bicyclic core structure related to the substance 4-quinolone. They a ...
heterocycles in a manner similar to quercetin dioxygenase, but are thought to mediate a radical reaction of a dioxygen molecule with a
carbanion In organic chemistry, a carbanion is an anion in which carbon is trivalent (forms three bonds) and bears a formal negative charge (in at least one significant resonance form). Formally, a carbanion is the conjugate base of a carbon acid: :R3 ...
on the substrate (figure 5). Both HDO and QDO belong to the α/β hydrolase superfamily of enzymes, although the catalytic residues in HDO and QDO do not seem to serve the same function as they do in the rest of the enzymes in the α/β hydrolase superfamily.


Clinical significance

Diversity in the dioxygenase family means a wide range of biological roles: *
Tryptophan 2,3-dioxygenase In enzymology, tryptophan 2,3-dioxygenase () is a heme enzyme that catalyzes the oxidation of -tryptophan (-Trp) to ''N''-formyl--kynurenine, as the first and rate-limiting step of the kynurenine pathway. :-tryptophan + O2 ''N''-formyl--kynuren ...
(TDO) helps regulate
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic ...
in the body and is expressed in many human tumors. The other heme iron-dependent dioxygenase, IDO, also has relevance to human health, as it functions in inflammatory responses in the context of certain diseases. IDO affects both tryptophan and
kynurenine -Kynurenine is a metabolite of the amino acid -tryptophan used in the production of niacin. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase ...
and has been linked to depression in humans. *
Alkaptonuria Alkaptonuria is a rare inherited genetic disease which is caused by a mutation in the ''HGD'' gene for the enzyme homogentisate 1,2-dioxygenase (); if a person inherits an abnormal copy from both parents (it is a recessive condition), the body ac ...
is a genetic disease that results in a deficiency of homogentisate 1,2-dioxygenase, which is responsible for catalyzing the formation of
4-maleylacetoacetate 4-Maleylacetoacetate (4-maleylacetoacetatic acid) is an intermediate in the metabolism of tyrosine. It is converted to fumarylacetoacetate by the enzyme 4-maleylacetoacetate cis-trans-isomerase. Gluthathione coenzymatically helps in conversion ...
from
homogentisate Homogentisic acid (2,5-dihydroxyphenylacetic acid) is a phenolic acid usually found in ''Arbutus unedo'' (strawberry-tree) honey. It is also present in the bacterial plant pathogen ''Xanthomonas campestris'' pv. ''phaseoli'' as well as in the ye ...
. Buildup of homogentisic acid can result in heart valve damage, kidney stones and damage to cartilage in the body. *
Pantothenate kinase-associated neurodegeneration Pantothenate kinase-associated neurodegeneration (PKAN), formerly called Hallervorden–Spatz syndrome, is a genetic degenerative disease of the brain that can lead to parkinsonism, dystonia, dementia, and ultimately death. Neurodegeneration in P ...
(PKAN) is an
autosomal recessive In genetics, dominance is the phenomenon of one variant ( allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant an ...
disorder that can lead to the development of iron granules and Lewy bodies in
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
s. A study has shown that patients diagnosed with PKAN were found to have increased
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
levels in the
globus pallidus The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal, known in rode ...
as a consequence of a cysteine dioxygenase deficiency. Patients with PKAN often develop symptoms of
dementia Dementia is a disorder which manifests as a set of related symptoms, which usually surfaces when the brain is damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, which negatively affe ...
and often die at an early age in adulthood. * In DNA repair, the Fe (II)/2-oxoglutarate-dependent dioxygenase
AlkB AlkB (Alkylation B) is a protein found in E. coli, induced during an adaptive response and involved in the direct reversal of alkylation damage.Errol C.Friedberg, Graham c. Walker, Wolfram Siede, Richard D. Wood, Roger A. schultz, Tom Ellenberge ...
, functions in the oxidative removal of alkylation damage to DNA. Failure to remove DNA alkylation damage can result in cytotoxicity or mutagenesis during DNA replication. *
Cyclooxygenase Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme (specifically, a family of isozymes, ) that is responsible for formation of prostanoids, including thromboxane and prostaglandins such as pr ...
s (COX), which are responsible for forming
prostanoid Prostanoids are active lipid mediators that regulate inflammatory response. Prostanoids are a subclass of eicosanoids consisting of the prostaglandins (mediators of inflammatory and anaphylactic reactions), the thromboxanes (mediators of vasocons ...
s in the human body, are the target of many
NSAID Non-steroidal anti-inflammatory drugs (NSAID) are members of a therapeutic drug class which reduces pain, decreases inflammation, decreases fever, and prevents blood clots. Side effects depend on the specific drug, its dose and duration of ...
pain relievers. Inhibition of COX leads to reduced inflammation and has an analgesic effect due to the lowered level of prostaglandin and thromboxane synthesis.


References

{{Portal bar, Biology, border=no Oxidoreductases EC 1.13.11 Oxygenases