TFIIB
   HOME

TheInfoList



OR:

Transcription factor II B (TFIIB) is a
general transcription factor General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites ( promoter) on DNA to activate transcription of genetic information from DNA to messenger ...
that is involved in the formation of the
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of euka ...
preinitiation complex (PIC) and aids in stimulating transcription initiation. TFIIB is localised to the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
and provides a platform for PIC formation by binding and stabilising the DNA-TBP (
TATA-binding protein The TATA-binding protein (TBP) is a general transcription factor that binds specifically to a DNA sequence called the TATA box. This DNA sequence is found about 30 base pairs upstream of the transcription start site in some eukaryotic gen ...
) complex and by recruiting RNA polymerase II and other transcription factors. It is encoded by the gene, and is homologous to archaeal transcription factor B and analogous to bacterial
sigma factor A sigma factor (σ factor or specificity factor) is a protein needed for initiation of transcription in bacteria. It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase (RNAP) to gene promoters. It is ho ...
s.


Structure

TFIIB is a single 33kDa
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
consisting of 316
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
. TFIIB is made up of four functional regions: the
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
core domain; the B linker; the B reader and the
amino terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amin ...
zinc ribbon. TFIIB makes protein-protein interactions with the
TATA-binding protein The TATA-binding protein (TBP) is a general transcription factor that binds specifically to a DNA sequence called the TATA box. This DNA sequence is found about 30 base pairs upstream of the transcription start site in some eukaryotic gen ...
(TBP) subunit of
transcription factor IID Transcription factor II D (TFIID) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters ...
, and the
RPB1 DNA-directed RNA polymerase II subunit RPB1, also known as RPB1, is an enzyme that in humans is encoded by the ''POLR2A'' gene. Function This gene encodes the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing ...
subunit of
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of euka ...
. TFIIB makes sequence-specific
protein-DNA interaction DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, becaus ...
s with the
B recognition element The B recognition element (BRE) is a DNA sequence found in the promoter region of most genes in eukaryotes and Archaea. The BRE is a cis-regulatory element that is found immediately near TATA box, and consists of 7 nucleotides. There are two s ...
(BRE), a promoter element flanking the TATA element.


Mechanism of action

There are six steps in the mechanism of TFIIB action in the formation of the PIC and transcription initiation: #RNA polymerase II is recruited to DNA through the TFIIB B core and B ribbon. #RNA polymerase II unwinds DNA, aided by the TFIIB B linker and B reader (open complex formation). #RNA polymerase II selects a transcription start site, aided by the TFIIB B reader. #RNA polymerase II forms the first
phosphodiester bond In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is ...
. #RNA polymerase II produces short abortive transcripts due to clashes between nascent RNA and the TFIIB B reader loop. #Extension of nascent RNA to 12-13 nucleotides leads to ejection of TFIIB due to further clashes with TFIIB.


Interactions with RNA polymerase II

Each of the functional regions of TFIIB interacts with different parts of RNA polymerase II. The amino terminal B ribbon is located on dock domain of RNA polymerase II and extends in to the cleft towards the active site. Extending the B ribbon is the B reader that extends via the RNA exit tunnel to the binding site of the DNA-RNA hybrid and towards the
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate ( binding site) ...
. The B linker is the region between the B reader and the B core that is found in the cleft of RNA polymerase II and continues by the rudder and the clamp coiled-coil until it reaches the C terminal B core that is found above the wall of RNA polymerase II. The B reader and the B linker consist of highly conserved residues that are positioned through the RNA polymerase II tunnel towards the active site and ensure tight binding, without these key residues dissociation would occur. These two domains are also thought to adjust the position of some of the more flexible areas of RNA polymerase II to allow for the precise positioning of the DNA and allowing the addition of the new NTPs onto the nascent RNA chain. Upon binding RNA polymerase II, the B reader and B linker cause slight repositioning of the protrusion domain of RNA polymerase II which allows an essential second magnesium ion to bind in the active site. It forms a beta sheet and an ordered loop that helps with the stability of the structure when transcription is initiated.


Open and closed complexes

The open and closed conformations refer to the state of the DNA and whether the template strand has been separated from the non-template strand within the PIC. The place at which the DNA opens to form the bubble lies above a tunnel that is lined by the B-core, B-linker and B-reader as well as parts of RNA polymerase II. The B linker is found directly aligned with the point at which the DNA opens and in the open complex it is found between the two DNA strands, suggesting that it has a role in promoter melting, but it does not have a role in the catalytic RNA synthesis. Although TFIIB keeps a similar structure in both conformations some of the intramolecular interactions between the core and the B reader are disrupted upon DNA opening. After DNA melting the transcription initiator (Inr) must be located on the DNA so the TSS can be identified by the RNA polymerase II and transcription can begin. This is done by passing the DNA through the 'template tunnel' and the DNA is scanned, looking for the Inr and placing it in a position that ensures the transcription start site is located in the correct place by the RNA polymerase active site. The B reader of TFIIB is found in the template tunnel and is important in locating the Inr, mutations in the B reader cause the TSS to change and therefore incorrect transcription to occur (although PIC formation and DNA melting still take place).
Yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constit ...
are a particularly good example of this alignment as the yeast Inr motif has a strictly conserved A residue at position 28 and in the open complex model a complementary T residue can be found in the B reader helix. When this T residue is mutated, transcription was significantly less effective emphasizing the role of the B reader. The B reader loop is further thought to stabilise NTPs in the active site and, due to its flexibility, allow the nucleic acids to remain in contact during the early synthesis of the RNA molecule (i.e. stabilises the growing RNA-DNA hybrid)


Release

When the RNA transcript reaches 7 nucleotides long, transcription enters the elongation phase, the beginning of which is characterised by the collapsing of the DNA bubble and the ejection of TFIIB. This is thought to be because the nascent RNA clashes with the B linker helix when it is 6 bases long and upon further elongation to 12-13 bases it will clash with the B-reader and B-ribbon leading to dissociation. The DNA duplex also clashes with the B linker above the rudder (caused by rewinding of the DNA into a double helix).


Phosphorylation

TFIIB is
phosphorylated In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
at
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − for ...
65 which is found in the B reader domain. Without this phosphorylation, transcription initiation does not occur. It has been suggested that the general transcription factor TFIIH could act as the
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
for this phosphorylation although more evidence is needed to support this. Although TFIIB does not travel with the RNA polymerase II complex along the DNA during elongation, it has been recently suggested that it has a role in gene looping which links the promoter to the terminator of the gene. however, recent research has shown that a depletion in TFIIB is not lethal to cells and transcription levels are not significantly affected. This is because over 90% of
mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur ...
ian promoters do not contain a
BRE British English (BrE, en-GB, or BE) is, according to Oxford Dictionaries, "English as used in Great Britain, as distinct from that used elsewhere". More narrowly, it can refer specifically to the English language in England, or, more broadly, ...
(B recognition element) or
TATA box In molecular biology, the TATA box (also called the Goldberg–Hogness box) is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. The bacterial homolog of the TATA box is called the Pribnow box which has ...
sequence which are required for TFIIB to bind. In addition to this, TFIIB levels have been shown to fluctuate in different types of cell, and at different points in the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
, supporting the evidence that it is not required for all RNA polymerase II transcription. Gene looping is reliant on the interaction between phosphorylated serine residues found on the C terminal domain of RNA polymerase II and polyadenylation factors. TFIIB is needed for the interaction of promoters with these
polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euk ...
factors, such as SSu72 and CstF-64. It has also been suggested that both gene loop formation and the collapse of the DNA bubble are a result of TFIIB phosphorylation; however, it is unclear whether this gene loop formation is a cause or consequence of transcription initiation.


Similarities in other transcription complexes

RNA polymerase III In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize ribosomal 5S rRNA, tRNA and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose e ...
uses a very similar factor to TFIIB called Brf (TFIIB-related factor) which also contains a conserved zinc ribbon and C terminal core. However, the structure diverges in the more flexible linker region although Brf still contains highly conserved sequences in the same positions that the B reader and B linker are found. These conserved regions probably carry out similar functions as the domains in TFIIB. RNA polymerase I does not use a factor that is similar to TFIIB; however, it is thought that another unknown factor fulfils the same function. There is no direct homologue for TFIIB in bacterial systems but there are proteins that bind the bacterial polymerase in a similar manner with no sequence similarity. In particular the bacterial protein σ70 contains domains that bind the polymerase at the same points as the B-linker, B-ribbon and B-core. This is especially apparent in the σ 3 region and the region 4 linker which might stabilise the DNA in the polymerase active site.


Clinical significance


Antiviral activity

Recent studies have shown that decreased TFIIB levels do not affect transcription levels within cells, this is thought to be partially because over 90% of mammalian promoters do not contain a BRE or TATA box. However, it has been shown that TFIIB is vital to the ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology a ...
'' transcription and regulation of the
herpes simplex virus Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), also known by their taxonomical names '' Human alphaherpesvirus 1'' and ''Human alphaherpesvirus 2'', are two members of the human ''Herpesviridae'' family, a set of viruses that produce viral in ...
. This is thought to be due to similarity TFIIB has to cyclin A. In order to undergo replication, viruses often stop host cells progression through the cell cycle, using cyclins and other proteins. As TFIIB has a similar structure to cyclin A it has been suggested that depleted levels of TFIIB could have antiviral effects.


Neurodegeneration

Studies have shown that the binding of TFIIB to TBP is affected by the length of the
polyglutamine tract A polyglutamine tract or polyQ tract is a portion of a protein consisting of a sequence of several glutamine units. A tract typically consists of about 10 to a few hundred such units. A multitude of genes, in various eukaryotic species (including h ...
in TBP. Extended polyglutamine tracts such as those found in
neurodegenerative diseases A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophi ...
cause increased interaction with TFIIB. This is thought to affect transcription in these diseases as it reduces the availability of TFIIB to other promoters in the
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
as the TFIIB is instead interacting with the expanded polyglutamine tracts.


References


External links

* * * {{DEFAULTSORT:Transcription Factor Ii B Molecular genetics Proteins Gene expression Transcription factors