System/4 Pi
   HOME

TheInfoList



OR:

The IBM System/4 Pi is a family of avionics computers used, in various versions, on the F-15 Eagle fighter, E-3 Sentry AWACS, Harpoon (missile), Harpoon Missile, NASA's Skylab, Manned Orbital Laboratory, MOL, and the Space Shuttle program, Space Shuttle, as well as other aircraft. Development began in 1965, deliveries in 1967. It descends from the approach used in the System/360 IBM mainframe, mainframe family of computers, in which the members of the family were intended for use in many varied user applications. (This is expressed in the name: there are 4Pi, π steradians in a sphere, just as there are 360 Degree (angle), degrees in a circle.) Previously, custom computers had been designed for each aerospace application, which was extremely costly.


Models

System/4 Pi consisted of basic models: * Model TC (Tactical Computer) - A briefcase-size computer for applications such as missile guidance, helicopters, satellites and submarines. Weight: about * Model CP (Customized Processor/Cost Performance) - An intermediate-range processor for applications such as aircraft navigation, weapons delivery, radar correlation and mobile battlefield systems. Weight: total ** Model CP-2 (Cost Performance - Model 2), weight * Model EP (Extended Performance) - A large-scale data processor for applications requiring real-time processing of large volumes of data, such as crewed spacecraft, airborne warning and control systems and command and control systems. Weight:


System/360 connections

Connections with System/360: * Main storage arrays of System/4 Pi were assembled from core planes that were militarized versions of those used in IBM System/360 computers * Software was for both 360 and 4 Pi * Model EP used an instruction subset of IBM System/360 (Model 44) - user programs could be checked on System/360


Uses

The Skylab space station employed the model TC-1, which had a 16-bit Word (data type), word length and 16,384 words of memory with a custom input/output assembly.


AP-101

The AP-101, being the top-of-the-line of the System/4 Pi range, shares its general architecture with the System/360 IBM mainframe, mainframes. It has 16 32-bit processor register, registers, and uses a microprogram to define an instruction set of 154 instructions. Originally only 16 bits were available for addressing memory; later this was extended with four bits from the status register, program status word register, allowing a directly addressable memory range of 1Mega-, M locations. This avionics computer has been used in the U.S. Space Shuttle program, Space Shuttle, the B-52 Stratofortress, B-52 and B-1B bombers, and other aircraft. It is a repackaged version of the AP-1 used in the F-15 Eagle, F-15 fighter. When it was designed, it was a high-performance pipelined processor with core memory. While its specifications are exceeded by most of the modern microprocessors, it was considered high-performance for its era as it could process 480,000 instructions per second (0.48 MIPS; compared to the 7,000 instructions per second (0.007 MIPS) of the computer used on Gemini spacecraft, while top-of-the line microprocessors as of 2020 are capable of performing more than 2,000,000 MIPS). It remained in service on the Space Shuttle because it worked, was flight-certified, and developing a new system would have been too expensive. The Space Shuttle AP-101s were augmented by glass cockpit technology. The B-1B bomber employs a network of eight model AP-101F computers. The AP-101B originally used in the Shuttle had core memory. The AP-101S upgrade in the early 1990s used semiconductor memory. Each AP-101 on the Shuttle was coupled with an I/O processor, input-output processor (IOP), consisting of one Master Sequence Controller (MSC) and 24 Bus Control Elements (BCEs). The MSC and BCEs executed programs from the same memory system as the main CPU, offloading control the Shuttle's serial data bus system from the CPU. The Space Shuttle used five AP-101 computers as ''general-purpose computers'' (GPCs). Four operated in sync, for redundancy, while the fifth was a backup running software written independently. The Shuttle's guidance, navigation and control software was written in HAL/S, a special-purpose high-level programming language, while much of the operating system and low-level utility software was written in assembly language. AP-101s used by the US Air Force are mostly programmed in JOVIAL, such as the system found on the B-1B Lancer bomber.Jovial to smooth U.S. Air Force shift to Ada. (processing language)
/ref>


References


Bibliography

* * * * *


External links


Space Shuttle Computers and Avionics
Guidance computers IBM avionics computers, 4999System 4 Pi Military computers {{space-stub