Superabundant number
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a superabundant number (sometimes abbreviated as SA) is a certain kind of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
. A natural number ''n'' is called superabundant precisely when, for all ''m'' < ''n'' :\frac < \frac where ''σ'' denotes the sum-of-divisors function (i.e., the sum of all positive divisors of ''n'', including ''n'' itself). The first few superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... . For example, the number 5 is not a superabundant number because for 1, 2, 3, 4, and 5, the sigma is 1, 3, 4, 7, 6, and 7/4 > 6/5. Superabundant numbers were defined by . Unknown to Alaoglu and Erdős, about 30 pages of Ramanujan's 1915 paper "Highly Composite Numbers" were suppressed. Those pages were finally published in The Ramanujan Journal 1 (1997), 119–153. In section 59 of that paper, Ramanujan defines generalized highly composite numbers, which include the superabundant numbers.


Properties

proved that if ''n'' is superabundant, then there exist a ''k'' and ''a''1, ''a''2, ..., ''a''''k'' such that :n=\prod_^k (p_i)^ where ''p''i is the ''i''-th prime number, and :a_1\geq a_2\geq\dotsb\geq a_k\geq 1. That is, they proved that if ''n'' is superabundant, the prime decomposition of ''n'' has non-increasing exponents (the exponent of a larger prime is never more than that a smaller prime) and that all primes up to p_k are factors of ''n''. Then in particular any superabundant number is an even integer, and it is a multiple of the ''k''-th primorial p_k\#. In fact, the last exponent ''a''''k'' is equal to 1 except when n is 4 or 36. Superabundant numbers are closely related to highly composite numbers. Not all superabundant numbers are highly composite numbers. In fact, only 449 superabundant and highly composite numbers are the same . For instance, 7560 is highly composite but not superabundant. Conversely, 1163962800 is superabundant but not highly composite. Alaoglu and Erdős observed that all superabundant numbers are highly abundant. Not all superabundant numbers are Harshad numbers. The first exception is the 105th SA number, 149602080797769600. The digit sum is 81, but 81 does not divide evenly into this SA number. Superabundant numbers are also of interest in connection with the Riemann hypothesis, and with
Robin's theorem In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (includin ...
that the Riemann hypothesis is equivalent to the statement that :\frac < 1 for all ''n'' greater than the largest known exception, the superabundant number 5040. If this inequality has a larger counterexample, proving the Riemann hypothesis to be false, the smallest such counterexample must be a superabundant number . Not all superabundant numbers are colossally abundant.


Extension

The generalized k-super abundant numbers are those such that \frac < \frac for all m < n, where \sigma_k(n) is the sum of the k-th powers of the divisors of n. 1-super abundant numbers are superabundant numbers. 0-super abundant numbers are highly composite numbers. For example, generalized 2-super abundant numbers are 1, 2, 4, 6, 12, 24, 48, 60, 120, 240, ...


References

*. *. *.


External links


MathWorld: Superabundant number
{{Classes of natural numbers Divisor function Integer sequences