Subscapularis
   HOME

TheInfoList



OR:

The subscapularis is a large triangular muscle which fills the subscapular fossa and inserts into the lesser tubercle of the humerus and the front of the capsule of the Glenohumeral joint, shoulder-joint.


Structure

It arises from its medial two-thirds and Some fibers arise from tendinous laminae, which intersect the muscle and are attached to ridges on the bone; others from an aponeurosis, which separates the muscle from the teres major and the long head of the triceps brachii. The fibers pass laterally and coalesce into a tendon that is inserted into the lesser tubercle of the humerus and the anterior part of the Glenohumeral joint#Capsule, shoulder-joint capsule. Tendinous fibers extend to the greater tubercle with insertions into the bicipital groove.


Relations

The tendon of the muscle is separated from the neck of the scapula by a large Bursa (anatomy), bursa, which communicates with the cavity of the shoulder-joint through an aperture in the capsule. The subscapularis is separated from the serratus anterior books.google.com/books?id=AtC4BAAAQBAJ&lpg=PA549&vq=bursa%20subscapularis%20%22serratus%20anterior%22&pg=PA549#v=snippet&q=supraserratus&f=false Shoulder Arthroscopy: Principles and Practice] , Springer Science & Business Media, Dec 16, 2013. . Accessed 2016-11-07.


Nerve supply

The subscapularis is supplied by the upper subscapular nerve, upper and lower subscapular nerves, branches of the posterior cord of the brachial plexus. (C5-C6)


Function

The subscapularis rotates the head of the humerus medially (internal rotation) and adducts it; when the arm is raised, it draws the humerus forward and downward. It is a powerful defense to the front of the shoulder-joint, preventing subluxation, displacement of the head of the humerus.


Clinical significance


Examination

The Christian Gerber, Gerber Lift-off test is the established clinical test for examination of the subscapularis. The bear hug test (internal rotation while palm is held on opposite shoulder and elbow is held in a position of maximal anterior translation) for subscapularis muscle tears has high sensitivity. Positive bear-hug and belly press tests indicate significant tearing of subscapularis.


Imaging

There is no singularly imaging device or technique for a satisfying and complete subscapularis examination, but rather the combination of the sagittal oblique MRI / short-axis US and axial MRI / long-axis US planes seems to generate useful results. Additionally, lesser tuberosity bony changes have been associated with subscapularis tendon tears. Findings with cysts seem to be more specific and combined findings with cortical irregularities more sensitive. Another fact typically for the subscapularis muscle is the fatty infiltration of the superior portions, while sparing the inferior portions. Since the long biceps tendon absents itself from the shoulder joint through the rotator cuff interval, it is easily possible to distinguish between the supraspinatus and the subscapularis tendon. Those two tendons build the interval sling.


Ultrasonography

Mack et al. developed an ultrasonographic procedure with which it is possible to explore almost the complete rotator cuff within six steps. It unveils clearly the whole area from the subedge of the subscapularis tendon until the intersection between the infraspinatus tendon and musculus teres minor. One of six steps does focus on the subscapularis tendon. In the first instance the examinator guides the applicator to the proximal humerus as perpendicularly as possible to the sulcus intertubercularis. Gliding now medially shows the insertion of the subscapularis tendon.


Longitudinal plane of the musculus subscapularis and its tendon

The subscapularis tendon lies approximately 3 to 5 cm under the surface. Quite deep for ultrasonography, and therefore displaying through a highly penetrative 5 MHz linear applicator is worth a try. And it really turned out to ease a detailed examination of the muscle which just abuts to the scapula. However, the tendon of primary interest does not get mapped as closely as desired. As anatomical analysis showed, it is only by external rotation possible to see the ventral part of the joint socket and its labrum. While at the neutral position the tuberculum minus occludes the view. Summing up it is through an external arm rotation and a medially applied 5 MHz sector sonic head possible to display the ventral part of the joint socket and its labrum with notedly lower echogenicity. The following sectional planes are defined for the sonographic examination of the different shoulder joint structures:


Tissue harmonic imaging

Primarily in abdominal imaging, tissue harmonic imaging (THI) gets more and more valued and used additionally to conventional ultrasonography. THI involves the use of harmonic frequencies that originate within the tissue as a result of nonlinear wave front propagation and are not present in the incident beam. These harmonic signals may arise differently at anatomic sites with similar impedances and thus lead to higher contrast resolution.” Along with higher contrast resolution it has an elevated signal-to-noise ratio and significantly reduced inter- and intraobserver variability compared with conventional US. Additionally it is possible to nearly eliminate ordinary US artifacts, i.e. side-lobe, near-field artifacts, reverberation artifacts. As aforementioned THI has already led to enhanced abdominal, breast, vascular and cardiac sonography. For musculo-skeletal aspects THI has not been used that much, although this method features some useful potential. For example, for the still tricky discrimination between the presence of a hypoechoic defect and/or loss of the outer tendon convexity/non-visualization of the tendon, that is between partial- and full-thickness rotator cuff tears. In comparison to a checking MR Arthrography Strobel K. ''et al.'' has arrived at the conclusion that through THI it is possible to achieve a generally improved visibility of joint and tendon surfaces, especially superior for subscapularis tendon abnormalities.


Additional images

File:Subscapularis muscle animation3.gif, Subscapularis muscle (shown in red). Animation. File:Subscapularis muscle animation.gif, Same as the left, but the bones around the muscle are shown as semi-transparent. File:Thorax section 9.jpg, Transverse section of thorax featuring subscapularis muscle File:Shoulder joint.svg, Diagram of the human shoulder joint


References


External links

{{Authority control Muscles of the upper limb Rotator cuff Shoulder medial rotators