Subluminal
   HOME

TheInfoList



OR:

Faster-than-light (also FTL, superluminal or supercausal)
travel Travel is the movement of people between distant geographical locations. Travel can be done by foot, bicycle, automobile, train, boat, bus, airplane, ship or other means, with or without luggage, and can be one way or round trip. Travel c ...
and
communication Communication (from la, communicare, meaning "to share" or "to be in relation with") is usually defined as the transmission of information. The term may also refer to the message communicated through such transmissions or the field of inqui ...
are the conjectural propagation of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
or
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random ...
faster than the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
(). The
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
implies that only particles with zero
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
(i.e., photons) may travel ''at'' the speed of light, and that nothing may travel faster. Particles whose speed exceeds that of light (
tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such partic ...
s) have been hypothesized, but their existence would violate causality and would imply
time travel Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically with the use of a hypothetical device known as a time machine. Time travel is a ...
. The scientific consensus is that they do not exist. "Apparent" or "effective" FTL, on the other hand, depends on the hypothesis that unusually distorted regions of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
might permit matter to reach distant locations in less time than light could in normal ("undistorted") spacetime. As of the 21st century, according to current scientific theories, matter is required to travel at slower-than-light (also STL or subluminal) speed with respect to the locally distorted spacetime region. Apparent FTL is not excluded by
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
; however, any apparent FTL physical plausibility is currently speculative. Examples of apparent FTL proposals are the
Alcubierre drive The Alcubierre drive () is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable ...
,
Krasnikov tube A Krasnikov tube is a speculative mechanism for space travel involving the warping of spacetime into permanent superluminal tunnels. The resulting structure is analogous to a wormhole or an immobile Alcubierre drive (and like them requires exot ...
s, traversable wormholes, and
quantum tunneling In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
.


Superluminal travel of non-information

In the context of this article, FTL is the transmission of information or matter faster than ''c'', a constant equal to the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in vacuum, which is 299,792,458 m/s (by definition of the metre) or about 186,282.397 miles per second. This is not quite the same as traveling faster than light, since: *Some processes propagate faster than ''c'', but cannot carry information (see examples in the sections immediately following). *In some materials where light travels at speed ''c/n'' (where ''n'' is the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
) other particles can travel faster than ''c/n'' (but still slower than ''c''), leading to Cherenkov radiation (see phase velocity below). Neither of these phenomena violates
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
or creates problems with causality, and thus neither qualifies as ''FTL'' as described here. In the following examples, certain influences may appear to travel faster than light, but they do not convey energy or information faster than light, so they do not violate special relativity.


Daily sky motion

For an earth-bound observer, objects in the sky complete one revolution around the Earth in one day. Proxima Centauri, the nearest star outside the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, is about four and a half light-years away. In this frame of reference, in which Proxima Centauri is perceived to be moving in a circular trajectory with a radius of four light years, it could be described as having a speed many times greater than ''c'' as the rim speed of an object moving in a circle is a product of the radius and angular speed. It is also possible on a geostatic view, for objects such as comets to vary their speed from subluminal to superluminal and vice versa simply because the distance from the Earth varies. Comets may have orbits which take them out to more than 1000 AU. The circumference of a circle with a radius of 1000 AU is greater than one light day. In other words, a comet at such a distance is superluminal in a geostatic, and therefore non-inertial, frame.


Light spots and shadows

If a laser beam is swept across a distant object, the spot of laser light can easily be made to move across the object at a speed greater than ''c''. Similarly, a shadow projected onto a distant object can be made to move across the object faster than ''c''. In neither case does the light travel from the source to the object faster than ''c'', nor does any information travel faster than light.


Closing speeds

The rate at which two objects in motion in a single frame of reference get closer together is called the mutual or closing speed. This may approach twice the speed of light, as in the case of two particles travelling at close to the speed of light in opposite directions with respect to the reference frame. Imagine two fast-moving particles approaching each other from opposite sides of a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
of the collider type. The closing speed would be the rate at which the distance between the two particles is decreasing. From the point of view of an observer standing at rest relative to the accelerator, this rate will be slightly less than twice the speed of light.
Special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
does not prohibit this. It tells us that it is wrong to use
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his '' Dialogue Concerning the Two Chief World Systems'' using t ...
to compute the velocity of one of the particles, as would be measured by an observer traveling alongside the other particle. That is, special relativity gives the correct
velocity-addition formula In relativistic physics, a velocity-addition formula is a three-dimensional equation that relates the velocities of objects in different reference frames. Such formulas apply to successive Lorentz transformations, so they also relate different f ...
for computing such
relative velocity The relative velocity \vec_ (also \vec_ or \vec_) is the velocity of an object or observer B in the rest frame of another object or observer A. Classical mechanics In one dimension (non-relativistic) We begin with relative motion in the classi ...
. It is instructive to compute the relative velocity of particles moving at ''v'' and −''v'' in accelerator frame, which corresponds to the closing speed of 2''v'' > ''c''. Expressing the speeds in units of ''c'', ''β'' = ''v''/''c'': :\beta_\text = \frac = \frac \leq 1.


Proper speeds

If a spaceship travels to a planet one light-year (as measured in the Earth's rest frame) away from Earth at high speed, the time taken to reach that planet could be less than one year as measured by the traveller's clock (although it will always be more than one year as measured by a clock on Earth). The value obtained by dividing the distance traveled, as determined in the Earth's frame, by the time taken, measured by the traveller's clock, is known as a proper speed or a
proper velocity In relativity, proper velocity (also known as celerity) w of an object relative to an observer is the ratio between observer-measured displacement vector \textbf and proper time elapsed on the clocks of the traveling object: :\textbf = \frac ...
. There is no limit on the value of a proper speed as a proper speed does not represent a speed measured in a single inertial frame. A light signal that left the Earth at the same time as the traveller would always get to the destination before the traveller.


Possible distance away from Earth

Since one might not travel faster than light, one might conclude that a human can never travel further from the Earth than 40 light-years if the traveler is active between the age of 20 and 60. A traveler would then never be able to reach more than the very few star systems which exist within the limit of 20–40 light-years from the Earth. This is a mistaken conclusion: because of
time dilation In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational ...
, the traveler can travel thousands of light-years during their 40 active years. If the spaceship accelerates at a constant 1 g (in its own changing frame of reference), it will, after 354 days, reach speeds a little under the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
(for an observer on Earth), and time dilation will increase the traveler's lifespan to thousands of Earth years, seen from the reference system of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
 ⁠— but the traveler's subjective lifespan will not thereby change. If they were then to return to Earth, the traveler would arrive on Earth thousands of years into the future. Their travel speed would not have been observed from Earth as being supraluminal ⁠— neither for that matter would it appear to be so from the traveler's perspective– but the traveler would instead have experienced a length contraction of the universe in their direction of travel. After the traveler reverses course, the Earth will seem to experience much more time passing than the traveler does. So while the traveler's (ordinary) coordinate speed cannot exceed ''c'', their proper speed, or distance traveled from the Earth's point of reference divided by
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
, can be much greater than ''c''. This is seen in statistical studies of muons traveling much further than ''c'' times their
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
(at rest), if traveling close to ''c''.


Phase velocities above ''c''

The phase velocity of an
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
, when traveling through a medium, can routinely exceed ''c'', the vacuum velocity of light. For example, this occurs in most glasses at
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
frequencies. However, the phase velocity of a wave corresponds to the propagation speed of a theoretical single-frequency (purely monochromatic) component of the wave at that frequency. Such a wave component must be infinite in extent and of constant amplitude (otherwise it is not truly monochromatic), and so cannot convey any information. Thus a phase velocity above ''c'' does not imply the propagation of
signals In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The ''IEEE Transactions on Signal Processing'' ...
with a velocity above ''c''.


Group velocities above ''c''

The group velocity of a wave may also exceed ''c'' in some circumstances. In such cases, which typically at the same time involve rapid attenuation of the intensity, the maximum of the envelope of a pulse may travel with a velocity above ''c''. However, even this situation does not imply the propagation of
signals In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The ''IEEE Transactions on Signal Processing'' ...
with a velocity above ''c'', even though one may be tempted to associate pulse maxima with signals. The latter association has been shown to be misleading, because the information on the arrival of a pulse can be obtained before the pulse maximum arrives. For example, if some mechanism allows the full transmission of the leading part of a pulse while strongly attenuating the pulse maximum and everything behind (distortion), the pulse maximum is effectively shifted forward in time, while the information on the pulse does not come faster than ''c'' without this effect. However, group velocity can exceed ''c'' in some parts of a
Gaussian beam In optics, a Gaussian beam is a beam of electromagnetic radiation with high monochromaticity whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. Thi ...
in vacuum (without attenuation). The diffraction causes the peak of the pulse to propagate faster, while overall power does not.


Universal expansion

The expansion of the universe causes distant galaxies to recede from us faster than the speed of light, if proper distance and
cosmological time Cosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. Such time coordinate may be defined for a homogeneous, expanding universe so that the universe has the same density everywhere at ...
are used to calculate the speeds of these galaxies. However, in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, velocity is a local notion, so velocity calculated using comoving coordinates does not have any simple relation to velocity calculated locally. (See
Comoving and proper distances In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. ''Proper distance'' roughly corresponds to where a distant object would be at a spec ...
for a discussion of different notions of 'velocity' in cosmology.) Rules that apply to relative velocities in special relativity, such as the rule that relative velocities cannot increase past the speed of light, do not apply to relative velocities in comoving coordinates, which are often described in terms of the "expansion of space" between galaxies. This expansion rate is thought to have been at its peak during the
inflationary epoch __NOTOC__ In physical cosmology, the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the ...
thought to have occurred in a tiny fraction of the second after the Big Bang (models suggest the period would have been from around 10−36 seconds after the Big Bang to around 10−33 seconds), when the universe may have rapidly expanded by a factor of around 1020 to 1030. There are many galaxies visible in telescopes with red shift numbers of 1.4 or higher. All of these are currently traveling away from us at speeds greater than the speed of light. Because the
Hubble parameter Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
is decreasing with time, there can actually be cases where a galaxy that is receding from us faster than light does manage to emit a signal which reaches us eventually. However, because the expansion of the universe is accelerating, it is projected that most galaxies will eventually cross a type of cosmological
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
where any light they emit past that point will never be able to reach us at any time in the infinite future, because the light never reaches a point where its "peculiar velocity" towards us exceeds the expansion velocity away from us (these two notions of velocity are also discussed in Comoving and proper distances#Uses of the proper distance). The current distance to this cosmological event horizon is about 16 billion light-years, meaning that a signal from an event happening at present would eventually be able to reach us in the future if the event was less than 16 billion light-years away, but the signal would never reach us if the event was more than 16 billion light-years away.


Astronomical observations

Apparent superluminal motion is observed in many
radio galaxies A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wav ...
,
blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the ...
s, quasars, and recently also in
microquasar A microquasar, the smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star. The matter being pulled from the companion star forms an accretion disk around the black hole ...
s. The effect was predicted before it was observed by
Martin Rees Martin John Rees, Baron Rees of Ludlow One or more of the preceding sentences incorporates text from the royalsociety.org website where: (born 23 June 1942) is a British cosmologist and astrophysicist. He is the fifteenth Astronomer Royal, ...
and can be explained as an optical illusion caused by the object partly moving in the direction of the observer, when the speed calculations assume it does not. The phenomenon does not contradict the theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
. Corrected calculations show these objects have velocities close to the speed of light (relative to our reference frame). They are the first examples of large amounts of mass moving at close to the speed of light. Earth-bound laboratories have only been able to accelerate small numbers of elementary particles to such speeds.


Quantum mechanics

Certain phenomena in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
, such as
quantum entanglement Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of ...
, might give the superficial impression of allowing communication of information faster than light. According to the
no-communication theorem In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurem ...
these phenomena do not allow true communication; they only let two observers in different locations see the same system simultaneously, without any way of controlling what either sees.
Wavefunction collapse In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an ''observa ...
can be viewed as an epiphenomenon of quantum decoherence, which in turn is nothing more than an effect of the underlying local time evolution of the wavefunction of a system and ''all'' of its environment. Since the underlying behavior does not violate local causality or allow FTL communication, it follows that neither does the additional effect of wavefunction collapse, whether real ''or'' apparent. The
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
implies that individual photons may travel for short distances at speeds somewhat faster (or slower) than ''c'', even in vacuum; this possibility must be taken into account when enumerating
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduc ...
s for a particle interaction. However, it was shown in 2011 that a single photon may not travel faster than ''c''. In quantum mechanics,
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturba ...
s may travel faster than light, and this phenomenon is related to the fact that static field effects (which are mediated by virtual particles in quantum terms) may travel faster than light (see section on static fields above). However, macroscopically these fluctuations average out, so that photons do travel in straight lines over long (i.e., non-quantum) distances, and they do travel at the speed of light on average. Therefore, this does not imply the possibility of superluminal information transmission. There have been various reports in the popular press of experiments on faster-than-light transmission in optics — most often in the context of a kind of quantum tunnelling phenomenon. Usually, such reports deal with a phase velocity or group velocity faster than the vacuum velocity of light. However, as stated above, a superluminal phase velocity cannot be used for faster-than-light transmission of information.


Hartman effect

The Hartman effect is the tunneling effect through a barrier where the tunneling time tends to a constant for large barriers. This could, for instance, be the gap between two prisms. When the prisms are in contact, the light passes straight through, but when there is a gap, the light is refracted. There is a non-zero probability that the photon will tunnel across the gap rather than follow the refracted path. For large gaps between the prisms the tunnelling time approaches a constant and thus the photons appear to have crossed with a superluminal speed. However, the Hartman effect cannot actually be used to violate relativity by transmitting signals faster than ''c'', because the tunnelling time "should not be linked to a velocity since evanescent waves do not propagate". The evanescent waves in the Hartman effect are due to virtual particles and a non-propagating static field, as mentioned in the sections above for gravity and electromagnetism.


Casimir effect

In physics, the
Casimir–Polder force In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who predi ...
is a physical force exerted between separate objects due to resonance of
vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experiment ...
in the intervening space between the objects. This is sometimes described in terms of virtual particles interacting with the objects, owing to the mathematical form of one possible way of calculating the strength of the effect. Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. Because the effect is due to virtual particles mediating a static field effect, it is subject to the comments about static fields discussed above.


EPR paradox

The EPR paradox refers to a famous
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anc ...
of
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
,
Boris Podolsky Boris Yakovlevich Podolsky (russian: link=no, Бори́с Я́ковлевич Подо́льский; June 29, 1896 – November 28, 1966) was a Russian-American physicist of Jewish descent, noted for his work with Albert Einstein and Nathan ...
and
Nathan Rosen Nathan Rosen (Hebrew: נתן רוזן; March 22, 1909 – December 18, 1995) was an American-Israeli physicist noted for his study on the structure of the hydrogen atom and his work with Albert Einstein and Boris Podolsky on entangled wave functio ...
that was realized experimentally for the first time by
Alain Aspect Alain Aspect (; born 15 June 1947) is a French physicist noted for his experimental work on quantum entanglement. Aspect was awarded the 2022 Nobel Prize in Physics, jointly with John Clauser and Anton Zeilinger, "for experiments with entangl ...
in 1981 and 1982 in the
Aspect experiment Aspect's experiment was the first quantum mechanics experiment to demonstrate the violation of Bell's inequalities. Its 1982 result allowed for further validation of the quantum entanglement and locality principles. It also offered an experimental ...
. In this experiment, the measurement of the state of one of the quantum systems of an entangled pair apparently instantaneously forces the other system (which may be distant) to be measured in the complementary state. However, no information can be transmitted this way; the answer to whether or not the measurement actually affects the other quantum system comes down to which
interpretation of quantum mechanics An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraord ...
one subscribes to. An experiment performed in 1997 by
Nicolas Gisin Nicolas Gisin (born 1952) is a Swiss physicist and professor at the University of Geneva working on the foundations of quantum mechanics, and quantum information and communication. His work includes both experimental and theoretical physics. He ...
has demonstrated non-local quantum correlations between particles separated by over 10 kilometers. But as noted earlier, the non-local correlations seen in entanglement cannot actually be used to transmit classical information faster than light, so that relativistic causality is preserved. The situation is akin to sharing a synchronized coin flip, where the second person to flip their coin will always see the opposite of what the first person sees, but neither has any way of knowing whether they were the first or second flipper, without communicating classically. See
No-communication theorem In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurem ...
for further information. A 2008 quantum physics experiment also performed by Nicolas Gisin and his colleagues has determined that in any hypothetical non-local hidden-variable theory, the speed of the quantum non-local connection (what Einstein called "spooky action at a distance") is at least 10,000 times the speed of light.


Delayed choice quantum eraser

The delayed-choice quantum eraser is a version of the EPR paradox in which the observation (or not) of interference after the passage of a photon through a
double slit experiment In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanic ...
depends on the conditions of observation of a second photon entangled with the first. The characteristic of this experiment is that the observation of the second photon can take place at a later time than the observation of the first photon, which may give the impression that the measurement of the later photons "retroactively" determines whether the earlier photons show interference or not, although the interference pattern can only be seen by correlating the measurements of both members of every pair and so it can't be observed until both photons have been measured, ensuring that an experimenter watching only the photons going through the slit does not obtain information about the other photons in an FTL or backwards-in-time manner.


Superluminal communication

Faster-than-light communication is, according to relativity, equivalent to
time travel Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically with the use of a hypothetical device known as a time machine. Time travel is a ...
. What we measure as the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in vacuum (or near vacuum) is actually the fundamental physical constant ''c''. This means that all
inertial In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
and, for the coordinate speed of light, non-inertial observers, regardless of their relative
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, will always measure zero-mass particles such as
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s traveling at ''c'' in vacuum. This result means that measurements of time and velocity in different frames are no longer related simply by constant shifts, but are instead related by Poincaré transformations. These transformations have important implications: *The relativistic momentum of a massive particle would increase with speed in such a way that at the speed of light an object would have infinite momentum. *To accelerate an object of non-zero
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
to ''c'' would require infinite time with any finite acceleration, or infinite acceleration for a finite amount of time. *Either way, such acceleration requires infinite energy. *Some observers with sub-light relative motion will disagree about which occurs first of any two events that are separated by a spacetime interval, space-like interval. In other words, any travel that is faster-than-light will be seen as traveling backwards in time in some other, equally valid, frames of reference, or need to assume the speculative hypothesis of possible Lorentz violations at a presently unobserved scale (for instance the Planck scale). Therefore, any theory which permits "true" FTL also has to cope with
time travel Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically with the use of a hypothetical device known as a time machine. Time travel is a ...
and all its associated paradoxes, or else to assume the Lorentz invariance to be a symmetry of thermodynamical statistical nature (hence a symmetry broken at some presently unobserved scale). *In special relativity the coordinate speed of light is only guaranteed to be ''c'' in an inertial frame of reference, inertial frame; in a non-inertial frame the coordinate speed may be different from ''c''. In general relativity no coordinate system on a large region of curved spacetime is "inertial", so it is permissible to use a global coordinate system where objects travel faster than ''c'', but in the local neighborhood of any point in curved spacetime we can define a "local inertial frame" and the local speed of light will be ''c'' in this frame, with massive objects moving through this local neighborhood always having a speed less than ''c'' in the local inertial frame.


Justifications


Casimir vacuum and quantum tunnelling

Special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
postulates that the speed of light in vacuum is invariant in inertial frames. That is, it will be the same from any frame of reference moving at a constant speed. The equations do not specify any particular value for the speed of light, which is an experimentally determined quantity for a fixed unit of length. Since 1983, the International System of Units, SI unit of length (the meter) has been defined using the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. The experimental determination has been made in vacuum. However, the vacuum we know is not the only possible vacuum which can exist. The vacuum has energy associated with it, called simply the
vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experiment ...
, which could perhaps be altered in certain cases. When vacuum energy is lowered, light itself has been predicted to go faster than the standard value ''c''. This is known as the Scharnhorst effect. Such a vacuum can be produced by bringing two perfectly smooth metal plates together at near atomic diameter spacing. It is called a Casimir effect#Vacuum energy, Casimir vacuum. Calculations imply that light will go faster in such a vacuum by a minuscule amount: a photon traveling between two plates that are 1 micrometer apart would increase the photon's speed by only about one part in 1036. Accordingly, there has as yet been no experimental verification of the prediction. A recent analysis argued that the Scharnhorst effect cannot be used to send information backwards in time with a single set of plates since the plates' rest frame would define a "preferred frame" for FTL signalling. However, with multiple pairs of plates in motion relative to one another the authors noted that they had no arguments that could "guarantee the total absence of causality violations", and invoked Hawking's speculative chronology protection conjecture which suggests that feedback loops of virtual particles would create "uncontrollable singularities in the renormalized quantum stress-energy" on the boundary of any potential time machine, and thus would require a theory of quantum gravity to fully analyze. Other authors argue that Scharnhorst's original analysis, which seemed to show the possibility of faster-than-''c'' signals, involved approximations which may be incorrect, so that it is not clear whether this effect could actually increase signal speed at all. The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Cologne, claim to have violated relativity experimentally by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons — relatively low-energy packets of light — travelled "instantaneously" between a pair of prisms that had been moved up to apart. Their experiment involved an optical phenomenon known as evanescent wave, "evanescent modes", and they claim that since evanescent modes have an imaginary wave number, they represent a "mathematical analogy" to quantum tunnelling. Nimtz has also claimed that "evanescent modes are not fully describable by the Maxwell's equations, Maxwell equations and quantum mechanics have to be taken into consideration." Other scientists such as Herbert G. Winful and Robert Helling have argued that in fact there is nothing quantum-mechanical about Nimtz's experiments, and that the results can be fully predicted by the equations of classical electromagnetism (Maxwell's equations). Nimtz told ''New Scientist'' magazine: "For the time being, this is the only violation of special relativity that I know of." However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars from the tail at each station along the way, so that the center of the ever-shrinking main train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars. Winful argues that the train analogy is a variant of the "reshaping argument" for superluminal tunneling velocities, but he goes on to say that this argument is not actually supported by experiment or simulations, which actually show that the transmitted pulse has the same length and shape as the incident pulse. Instead, Winful argues that the group velocity, group delay in tunneling is not actually the transit time for the pulse (whose spatial length must be greater than the barrier length in order for its spectrum to be narrow enough to allow tunneling), but is instead the lifetime of the energy stored in a standing wave which forms inside the barrier. Since the stored energy in the barrier is less than the energy stored in a barrier-free region of the same length due to destructive interference, the group delay for the energy to escape the barrier region is shorter than it would be in free space, which according to Winful is the explanation for apparently superluminal tunneling.For a summary of Herbert G. Winful's explanation for apparently superluminal tunneling time which does not involve reshaping, see A number of authors have published papers disputing Nimtz's claim that Einstein causality is violated by his experiments, and there are many other papers in the literature discussing why quantum tunneling is not thought to violate causality. It was later claimed by Eckle ''et al.'' that particle tunneling does indeed occur in zero real time. Their tests involved tunneling electrons, where the group argued a relativistic prediction for tunneling time should be 500–600 attoseconds (an attosecond is one quintillionth (10−18) of a second). All that could be measured was 24 attoseconds, which is the limit of the test accuracy. Again, though, other physicists believe that tunneling experiments in which particles appear to spend anomalously short times inside the barrier are in fact fully compatible with relativity, although there is disagreement about whether the explanation involves reshaping of the wave packet or other effects.


Give up (absolute) relativity

Because of the strong empirical support for
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
, any modifications to it must necessarily be quite subtle and difficult to measure. The best-known attempt is doubly special relativity, which posits that the Planck length is also the same in all reference frames, and is associated with the work of Giovanni Amelino-Camelia and João Magueijo. There are speculative theories that claim inertia is produced by the combined mass of the universe (e.g., Mach's principle), which implies that the rest frame of the universe might be ''preferred'' by conventional measurements of natural law. If confirmed, this would imply
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
is an approximation to a more general theory, but since the relevant comparison would (by definition) be outside the observable universe, it is difficult to imagine (much less construct) experiments to test this hypothesis. Despite this difficulty, such experiments have been proposed.


Spacetime distortion

Although the theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
forbids objects to have a relative velocity greater than light speed, and
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
reduces to special relativity in a local sense (in small regions of spacetime where curvature is negligible), general relativity does allow the space between distant objects to expand in such a way that they have a "recession velocity" which exceeds the speed of light, and it is thought that galaxies which are at a distance of more than about 14 billion light-years from us today have a recession velocity which is faster than light. Miguel Alcubierre theorized that it would be possible to create a Alcubierre drive, warp drive, in which a ship would be enclosed in a "warp bubble" where the space at the front of the bubble is rapidly contracting and the space at the back is rapidly expanding, with the result that the bubble can reach a distant destination much faster than a light beam moving outside the bubble, but without objects inside the bubble locally traveling faster than light. However, Alcubierre drive#Difficulties, several objections raised against the Alcubierre drive appear to rule out the possibility of actually using it in any practical fashion. Another possibility predicted by general relativity is the wormhole#Traversable wormholes, traversable wormhole, which could create a shortcut between arbitrarily distant points in space. As with the Alcubierre drive, travelers moving through the wormhole would not ''locally'' move faster than light travelling through the wormhole alongside them, but they would be able to reach their destination (and return to their starting location) faster than light traveling outside the wormhole. Gerald Cleaver and Richard Obousy, a professor and student of Baylor University, theorized that manipulating the extra spatial dimensions of string theory around a spaceship with an extremely large amount of energy would create a "bubble" that could cause the ship to travel faster than the speed of light. To create this bubble, the physicists believe manipulating the 10th spatial dimension would alter the dark energy in three large spatial dimensions: height, width and length. Cleaver said positive dark energy is currently responsible for speeding up the expansion rate of our universe as time moves on.


Lorentz symmetry violation

The possibility that Lorentz symmetry may be violated has been seriously considered in the last two decades, particularly after the development of a realistic effective field theory that describes this possible violation, the so-called Standard-Model Extension. This general framework has allowed experimental searches by ultra-high energy cosmic-ray experiments and a wide variety of experiments in gravity, electrons, protons, neutrons, neutrinos, mesons, and photons. The breaking of rotation and boost invariance causes direction dependence in the theory as well as unconventional energy dependence that introduces novel effects, including Lorentz-violating neutrino oscillations and modifications to the dispersion relations of different particle species, which naturally could make particles move faster than light. In some models of broken Lorentz symmetry, it is postulated that the symmetry is still built into the most fundamental laws of physics, but that spontaneous symmetry breaking of Lorentz invariance shortly after the Big Bang could have left a "relic field" throughout the universe which causes particles to behave differently depending on their velocity relative to the field; however, there are also some models where Lorentz symmetry is broken in a more fundamental way. If Lorentz symmetry can cease to be a fundamental symmetry at the Planck scale or at some other fundamental scale, it is conceivable that particles with a critical speed different from the speed of light be the ultimate constituents of matter. In current models of Lorentz symmetry violation, the phenomenological parameters are expected to be energy-dependent. Therefore, as widely recognized,Overbye, Dennis
''Interpreting the Cosmic Rays''
The New York Times, 31 December 2002
existing low-energy bounds cannot be applied to high-energy phenomena; however, many searches for Lorentz violation at high energies have been carried out using the Standard-Model Extension. Lorentz symmetry violation is expected to become stronger as one gets closer to the fundamental scale.


Superfluid theories of physical vacuum

In this approach the physical vacuum is viewed as a quantum superfluid which is essentially non-relativistic whereas Lorentz symmetry is not an exact symmetry of nature but rather the approximate description valid only for the small fluctuations of the superfluid background. Within the framework of the approach a theory was proposed in which the physical vacuum is conjectured to be a Bose–Einstein condensate, quantum Bose liquid whose ground-state wave function, wavefunction is described by the logarithmic Schrödinger equation. It was shown that the general relativity, relativistic gravitational interaction arises as the small-amplitude collective excitation mode whereas relativistic elementary particles can be described by the quasiparticle, particle-like modes in the limit of low momenta. The important fact is that at very high velocities the behavior of the particle-like modes becomes distinct from the theory of relativity, relativistic one - they can reach the speed of light#Upper limit on speeds, speed of light limit at finite energy; also, faster-than-light propagation is possible without requiring moving objects to have imaginary mass.


FTL neutrino flight results


MINOS experiment

In 2007 the MINOS collaboration reported results measuring the flight-time of 3 electronvolt, GeV neutrinos yielding a speed exceeding that of light by 1.8-sigma significance. However, those measurements were considered to be statistically consistent with neutrinos traveling at the speed of light. After the detectors for the project were upgraded in 2012, MINOS corrected their initial result and found agreement with the speed of light. Further measurements are going to be conducted.


OPERA neutrino anomaly

On September 22, 2011, a preprint from the OPERA experiment, OPERA Collaboration indicated detection of 17 and 28 GeV muon neutrinos, sent 730 kilometers (454 miles) from CERN near Geneva, Switzerland to the Laboratori Nazionali del Gran Sasso, Gran Sasso National Laboratory in Italy, traveling faster than light by a relative amount of (approximately 1 in 40,000), a statistic with 6.0-sigma significance. On 17 November 2011, a second follow-up experiment by OPERA scientists confirmed their initial results. However, scientists were skeptical about the results of these experiments, the significance of which was disputed. In March 2012, the ICARUS (experiment), ICARUS collaboration failed to reproduce the OPERA results with their equipment, detecting neutrino travel time from CERN to the Gran Sasso National Laboratory indistinguishable from the speed of light. Later the OPERA team reported two flaws in their equipment set-up that had caused errors far outside their original confidence interval: a fiber optic cable attached improperly, which caused the apparently faster-than-light measurements, and a clock oscillator ticking too fast.


Tachyons

In special relativity, it is impossible to accelerate an object the speed of light, or for a massive object to move the speed of light. However, it might be possible for an object to exist which moves faster than light. The hypothetical elementary particles with this property are called tachyons or tachyonic particles. Attempts tachyonic field, to quantize them failed to produce faster-than-light particles, and instead illustrated that their presence leads to an instability.Randall, Lisa; ''Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions'', p. 286: "People initially thought of tachyons as particles travelling faster than the speed of light...But we now know that a tachyon indicates an instability in a theory that contains it. Regrettably for science fiction fandom, science fiction fans, tachyons are not real physical particles that appear in nature." Various theorists have suggested that the neutrino might have a tachyonic nature, while others have disputed the possibility.


General relativity

General relativity was developed after
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
to include concepts like gravity. It maintains the principle that no object can accelerate to the speed of light in the reference frame of any coincident observer. However, it permits distortions in
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
that allow an object to move faster than light from the point of view of a distant observer. One such distortion is the
Alcubierre drive The Alcubierre drive () is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable ...
, which can be thought of as producing a ripple in
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
that carries an object along with it. Another possible system is the wormhole, which connects two distant locations as though by a shortcut. Both distortions would need to create a very strong curvature in a highly localized region of space-time and their gravity fields would be immense. To counteract the unstable nature, and prevent the distortions from collapsing under their own 'weight', one would need to introduce hypothetical exotic matter or negative energy. General relativity also recognizes that any means of faster-than-light travel could also be used for
time travel Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically with the use of a hypothetical device known as a time machine. Time travel is a ...
. This raises problems with causality. Many physicists believe that the above phenomena are impossible and that future theories of gravity will prohibit them. One theory states that stable wormholes are possible, but that any attempt to use a network of wormholes to violate causality would result in their decay. In string theory, Eric G. Gimon and Petr Hořava (theorist), Petr Hořava have argued that in a supersymmetric five-dimensional Gödel metric, Gödel universe, quantum corrections to general relativity effectively cut off regions of spacetime with causality-violating closed timelike curves. In particular, in the quantum theory a smeared supertube is present that cuts the spacetime in such a way that, although in the full spacetime a closed timelike curve passed through every point, no complete curves exist on the interior region bounded by the tube.


In fiction and popular culture

FTL travel is a common trope in science fiction.


See also

*Faster-than-light neutrino anomaly *Intergalactic travel *
Krasnikov tube A Krasnikov tube is a speculative mechanism for space travel involving the warping of spacetime into permanent superluminal tunnels. The resulting structure is analogous to a wormhole or an immobile Alcubierre drive (and like them requires exot ...
*Variable speed of light *Wheeler–Feynman absorber theory *Slow light


Notes


References

* * * *


External links


Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
with more details on phase and group velocity, and on causality

*Alcubierre, Miguel; [http://members.shaw.ca/mike.anderton/WarpDrive.pdf ''The Warp Drive: Hyper-Fast Travel Within General Relativity'', Classical and Quantum Gravity 11 (1994), L73–L77]
A systemized view of superluminal wave propagation
*[http://www.theculture.org/rich/sharpblue/archives/000089.html Relativity, FTL and causality] * *
Conical and paraboloidal superluminal particle acceleratorsRelativity and FTL (=Superluminal motion) Travel Homepage
{{Authority control Faster-than-light travel, Interstellar travel Physics in fiction Science fiction themes Theory of relativity Warp drive theory Tachyons Velocity