Stochastic electrodynamics
   HOME

TheInfoList



OR:

Stochastic electrodynamics (SED) is a variant of
classical electrodynamics Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical fi ...
(CED) of
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
. SED consists of a set of controversial theories that posit the existence of a classical
Lorentz invariant In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
radiation field having statistical properties similar to that of the
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
zero-point field (ZPF) of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
(QED).


Classical background field

The background field is introduced as a Lorentz force in the (classical) Abraham–Lorentz–Dirac equation (see: Abraham–Lorentz–Dirac force), where the classical statistics of the electric and magnetic fields and quadratic combinations thereof are chosen to match the vacuum expectation values of the equivalent operators in QED. The field is generally represented as a discrete sum of Fourier components each with amplitude and phase that are independent classical random variables, distributed so that the statistics of the fields are isotropic and unchanged under boosts. This prescription is such that each Fourier mode at frequency (f) is expected to have an energy of hf/2, equaling that of the ground state of the vacuum modes of QED. Unless cut off, the total field has an infinite energy density, with a spectral energy density (per unit frequency per unit volume) h/c33 where h is Planck's constant. Consequently, the background field is a classical version of the electromagnetic ZPF of QED, though in SED literature the field is commonly referred to simply as 'the ZPF' without making that distinction. Any finite cutoff frequency of the field itself would be incompatible with Lorentz invariance. For this reason, some researchers prefer to think of cutoff frequency in terms of the response of particles to the field rather than as a property of the field itself.


Brief history

Stochastic electrodynamics is a term for a collection of research efforts of many different styles based on the
ansatz In physics and mathematics, an ansatz (; , meaning: "initial placement of a tool at a work piece", plural Ansätze ; ) is an educated guess or an additional assumption made to help solve a problem, and which may later be verified to be part of the ...
that there exists a
Lorentz invariant In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
random
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
. The basic ideas have been around for a long time; but Marshall (1963) and Brafford seem to have been the originators of the more concentrated efforts starting in the 1960s. Thereafter Timothy Boyer, Luis de la Peña and Ana María Cetto were perhaps the most prolific contributors in the 1970s and beyond. Others have made contributions, alterations and proposals concentrating on the application of SED to problems in QED. A separate thread has been the investigation of an earlier proposal by Walther Nernst attempting to use the SED notion of a classical ZPF to explain ''inertial mass'' as due to a vacuum reaction. In 2010, Cavalleri ''et al.'' introduced SEDS ('pure' SED, as they call it, plus spin) as a fundamental improvement which they claim potentially overcomes all the known drawbacks to SED. They also claim SEDS resolves four observed effects that are so far unexplained by QED, i.e., 1) the physical origin of the ZPF, and its natural upper cutoff; 2) an anomaly in experimental studies of the neutrino rest mass; 3) the origin and quantitative treatment of 1/f noise; and 4) the high-energy tail (~ 1021 eV) of
cosmic rays Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our ow ...
. Two double-slit electron diffraction experiments are proposed to discriminate between QM and SEDS. In 2013 Auñon et al. showed that Casimir and Van der Waals interactions are a particular case of stochastic forces from electromagnetic sources when the broad Planck's spectrum is chosen and the wavefields are non-correlated. Addressing fluctuating partially coherent light emitters with a tailored spectral energy distribution in the optical range, this establishes the link between stochastic electrodynamics and coherence theory; henceforth putting forward a way to optically create and control both such zero-point fields as well as Lifshitz forces of thermal fluctuations. In addition, this opens the path to build many more stochastic forces on employing narrow-band light sources for bodies with frequency-dependent responses. In a 2014 dissertation Carlos Alberto de Oliveira Henriques measured the energy shift in the atomic levels of Xe atoms as they passed through nano-porous Casimir membranes. Some evidence of anomalous radiation were observed, however, he was not able to distinguish this radiation conclusively from the background due to said shortcomings in the detector. A follow up study detected anomalous radiation and was able to either eliminate various alternative sources of energy as an explanation or show that they were unlikely. The amount of radiation detected, however, was lower than expected.


Scope of SED

SED has been used in attempts to provide a ''classical'' explanation for effects previously considered to require quantum mechanics (here restricted to the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
and the
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac par ...
and QED) for their explanation. It has also been used to motivate a classical ZPF-based underpinning for gravity and inertia. There is no universal agreement on the successes and failures of SED, either in its congruence with standard theories of quantum mechanics, QED, and gravity, or in its compliance with observation. The following SED-based explanations are relatively uncontroversial and are free of criticism at the time of writing: *The
Casimir effect In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who pr ...
*The
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
*
Diamagnetism Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracte ...
*The
Unruh effect The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe ...
The following SED-based calculations and SED-related claims are more controversial and some have been subject to published criticism: *The ground state of the harmonic oscillator *The ground state of the hydrogen atom * De Broglie waves *
Inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
* Gravitation * Non-locality and tests of Bell's theorem


Zero point energy

According to Haisch and Rueda, inertia arises as an ''electromagnetic drag force'' on accelerating particles, produced by interaction with the zero-point field. In their 1998 Ann. Phys. paper (see citations), they speak of a "Rindler flux", presumably meaning the Unruh effect, and claim to have computed a nonzero ''"z.p.f. momentum"''. This computation rests upon their claim to compute a nonzero ''"z.p.f. Poynting vector"''. These proposals for
zero-point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pri ...
suggest a source of low or no cost free energy from the vacuum as well as the hope of developing a
reactionless drive A reactionless drive is a hypothetical device producing motion without the exhaust of a propellant. A propellantless drive is not necessarily reactionless when it constitutes an open system interacting with external fields; but a reactionless ...
. NASA continues to make assessments: In the usual interpretation of vacuum energy it is not possible to use it to do work. However, SED takes a rather more literal, classical interpretation, and views the very high energy density of the electromagnetic vacuum as propagating waves, which must necessarily carry considerable energy and momentum flux, ordinarily not evident in the absence of matter, because the flux is isotropic.


Fictional references

Arthur C. Clarke describes a "SHARP drive" (for Sakharov, Haisch, Rueda and Puthoff) in his 1997 novel " 3001: The Final Odyssey".


See also

* Stochastic quantum mechanics


References


Further reading

* *
on-line version
fro
Haisch's website
*
physics/9802030
*
gr-qc/0504061


External links



a physics organization founded by Bernard Haisch * H. E. Puthoff
Quantum Vacuum Fluctuations: A New Rosetta Stone of Physics?
* H. E. Puthoff

{{DEFAULTSORT:Stochastic Electrodynamics Fringe physics Quantum field theory Emergence