Spent nuclear fuel
   HOME

TheInfoList



OR:

Spent nuclear fuel, occasionally called used nuclear fuel, is
nuclear fuel Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergo ...
that has been irradiated in a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
(usually at a
nuclear power plant A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces ...
). It is no longer useful in sustaining a
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
in an ordinary
thermal reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and struct ...
and depending on its point along the nuclear fuel cycle, it may have considerably different isotopic constituents. The term "fuel" is slightly confusing, as it implies a combustion of some type, which does not occur in a nuclear power plant. Nevertheless, this term is generally accepted.


Nature of spent fuel


Nanomaterial properties

In the oxide
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy b ...
, intense temperature gradients exist that cause fission products to migrate. The zirconium tends to move to the centre of the fuel pellet where the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
is highest, while the lower-boiling fission products move to the edge of the pellet. The pellet is likely to contain many small
bubble Bubble, Bubbles or The Bubble may refer to: Common uses * Bubble (physics), a globule of one substance in another, usually gas in a liquid ** Soap bubble * Economic bubble, a situation where asset prices are much higher than underlying fund ...
-like pores that form during use; the fission product
xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
migrates to these voids. Some of this xenon will then decay to form
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
, hence many of these bubbles contain a large concentration of . In the case of mixed oxide (
MOX Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an al ...
) fuel, the xenon tends to diffuse out of the plutonium-rich areas of the fuel, and it is then trapped in the surrounding uranium dioxide. The
neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarn ...
tends to not be mobile. Also metallic particles of an
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
of Mo-Tc-Ru-Pd tend to form in the fuel. Other solids form at the boundary between the uranium dioxide grains, but the majority of the fission products remain in the
uranium dioxide Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear re ...
as solid solutions. A paper describing a method of making a non-
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
"uranium active" simulation of spent oxide fuel exists.


Fission products

3% of the mass consists of fission products of 235U and 239Pu (also indirect products in the decay chain); these are considered
radioactive waste Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, rare-earth mining, and nuclear weapon ...
or may be separated further for various industrial and medical uses. The fission products include every element from
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
through to the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
s; much of the fission yield is concentrated in two peaks, one in the second transition row ( Zr, Mo, Tc, Ru, Rh, Pd, Ag) and the other later in the periodic table ( I, Xe, Cs, Ba, La, Ce, Nd). Many of the fission products are either non-radioactive or only short-lived radioisotopes, but a considerable number are medium to long-lived radioisotopes such as 90Sr, 137Cs, 99Tc and 129I. Research has been conducted by several different countries into segregating the rare isotopes in fission waste including the "fission platinoids" (Ru, Rh, Pd) and silver (Ag) as a way of offsetting the cost of reprocessing; this is not currently being done commercially. The fission products can modify the thermal properties of the uranium dioxide; the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
oxides tend to lower the thermal conductivity of the fuel, while the
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
lic nanoparticles slightly increase the thermal conductivity of the fuel.


Table of chemical data


Plutonium

About 1% of the mass is 239Pu and 240Pu resulting from conversion of 238U, which may be considered either as a useful byproduct, or as dangerous and inconvenient waste. One of the main concerns regarding nuclear proliferation is to prevent this plutonium from being used by states, other than those already established as nuclear weapons states, to produce nuclear weapons. If the reactor has been used normally, the plutonium is reactor-grade, not weapons-grade: it contains more than 19% 240Pu and less than 80% 239Pu, which makes it not ideal for making bombs. If the irradiation period has been short then the plutonium is weapons-grade (more than 93%).


Uranium

96% of the mass is the remaining uranium: most of the original 238U and a little 235U. Usually 235U would be less than 0.8% of the mass along with 0.4% 236U. Reprocessed uranium will contain 236U, which is not found in nature; this is one isotope that can be used as a
fingerprint A fingerprint is an impression left by the friction ridges of a human finger. The recovery of partial fingerprints from a crime scene is an important method of forensic science. Moisture and grease on a finger result in fingerprints on surfac ...
for spent reactor fuel. If using a
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
fuel to produce fissile 233U, the SNF (Spent Nuclear Fuel) will have 233U, with a half-life of 159,200 years (unless this uranium is removed from the spent fuel by a chemical process). The presence of 233U will affect the long-term radioactive decay of the spent fuel. If compared with MOX fuel, the activity around one million years in the cycles with thorium will be higher due to the presence of the not fully decayed 233U. For
natural uranium Natural uranium (NU or Unat) refers to uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes ...
fuel, fissile component starts at 0.7% 235U concentration in natural uranium. At discharge, total fissile component is still 0.5% (0.2% 235U, 0.3% fissile 239Pu, 241Pu). Fuel is discharged not because fissile material is fully used-up, but because the neutron-absorbing fission products have built up and the fuel becomes significantly less able to sustain a nuclear reaction. Some natural uranium fuels use chemically active cladding, such as Magnox, and need to be reprocessed because long-term storage and disposal is difficult.


Minor actinides

Spent reactor fuel contains traces of the minor actinides. These are actinides other than uranium and plutonium and include neptunium,
americium Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was n ...
and curium. The amount formed depends greatly upon the nature of the fuel used and the conditions under which it was used. For instance, the use of MOX fuel (239Pu in a 238U matrix) is likely to lead to the production of more 241Am and heavier nuclides than a uranium/thorium based fuel (233U in a 232Th matrix). For highly enriched fuels used in marine reactors and research reactors, the isotope inventory will vary based on in-core fuel management and reactor operating conditions.


Spent fuel decay heat

When a nuclear reactor has been shut down and the nuclear fission chain reaction has ceased, a significant amount of heat will still be produced in the fuel due to the
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
of fission products. For this reason, at the moment of reactor shutdown, decay heat will be about 7% of the previous core power if the reactor has had a long and steady power history. About 1 hour after shutdown, the decay heat will be about 1.5% of the previous core power. After a day, the decay heat falls to 0.4%, and after a week it will be 0.2%. The decay heat production rate will continue to slowly decrease over time. Spent fuel that has been removed from a reactor is ordinarily stored in a water-filled spent fuel pool for a year or more (in some sites 10 to 20 years) in order to cool it and provide shielding from its radioactivity. Practical spent fuel pool designs generally do not rely on passive cooling but rather require that the water be actively pumped through heat exchangers. If there is a prolonged interruption of active cooling due to emergency situations, the water in the spent fuel pools may therefore boil off, possibly resulting in radioactive elements being released into the atmosphere.


Fuel composition and long term radioactivity

The use of different fuels in nuclear reactors results in different SNF composition, with varying activity curves. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
is fueled with, the actinide composition in the SNF will be different. An example of this effect is the use of
nuclear fuel Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergo ...
s with
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
. Th-232 is a fertile material that can undergo a neutron capture reaction and two beta minus decays, resulting in the production of fissile U-233. Its radioactive decay will strongly influence the long-term activity curve of the SNF around a million years. A comparison of the activity associated to U-233 for three different SNF types can be seen in the figure on the top right. The burnt fuels are Thorium with Reactor-Grade Plutonium (RGPu), Thorium with Weapons-Grade Plutonium (WGPu) and Mixed Oxide fuel (MOX, no thorium). For RGPu and WGPu, the initial amount of U-233 and its decay around a million years can be seen. This has an effect in the total activity curve of the three fuel types. The initial absence of U-233 and its daughter products in the MOX fuel results in a lower activity in region 3 of the figure on the bottom right, whereas for RGPu and WGPu the curve is maintained higher due to the presence of U-233 that has not fully decayed.
Nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, th ...
can remove the actinides from the spent fuel so they can be used or destroyed (see Long-lived fission product#Actinides).


Spent fuel corrosion


Noble metal nanoparticles and hydrogen

According to the work of
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
electrochemist David W. Shoesmith, the nanoparticles of Mo-Tc-Ru-Pd have a strong effect on the corrosion of uranium dioxide fuel. For instance his work suggests that when hydrogen (H2) concentration is high (due to the anaerobic corrosion of the
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
waste can), the oxidation of hydrogen at the nanoparticles will exert a protective effect on the uranium dioxide. This effect can be thought of as an example of protection by a sacrificial anode, where instead of a metal
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic is ...
reacting and dissolving it is the hydrogen gas that is consumed.


Storage, treatment, and disposal

Spent nuclear fuel is stored either in spent fuel pools (SFPs) or in dry casks. In the United States, SFPs and casks containing spent fuel are located either directly on nuclear power plant sites or on Independent Spent Fuel Storage Installations (ISFSIs). ISFSIs can be adjacent to a nuclear power plant site, or may reside away-from-reactor (AFR ISFSI). The vast majority of ISFSIs store spent fuel in dry casks. The
Morris Operation The Morris Operation in Grundy County, Illinois, United States, is the location of the only permanent (the rest are temporary) ''de facto'' high-level radioactive waste storage site in the United States and holds 772 tons of spent nuclear fuel. It ...
is currently the only ISFSI with a spent fuel pool in the United States.
Nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, th ...
can separate spent fuel into various combinations of reprocessed uranium,
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exh ...
, minor actinides, fission products, remnants of zirconium or steel cladding, activation products, and the reagents or solidifiers introduced in the reprocessing itself. If these constituent portions of spent fuel were reused, and additional wastes that may come as a byproduct of reprocessing are limited, reprocessing could ultimately reduce the volume of waste that needs to be disposed. Alternatively, the intact spent nuclear fuel can be directly disposed of as high-level
radioactive waste Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, rare-earth mining, and nuclear weapon ...
. The United States has planned disposal in deep geological formations, such as the Yucca Mountain nuclear waste repository, where it has to be shielded and packaged to prevent its migration to humans' immediate environment for thousands of years.Large, John H: ''Radioactive Decay Characteristics of Irradiated Nuclear Fuels'', January 2006. On March 5, 2009, however, Energy Secretary Steven Chu told a Senate hearing that "the Yucca Mountain site no longer was viewed as an option for storing reactor waste." Geological disposal has been approved in
Finland Finland ( fi, Suomi ; sv, Finland ), officially the Republic of Finland (; ), is a Nordic country in Northern Europe. It shares land borders with Sweden to the northwest, Norway to the north, and Russia to the east, with the Gulf of Bot ...
, using the
KBS-3 KBS-3 (an abbreviation of ''kärnbränslesäkerhet'', nuclear fuel safety) is a technology for disposal of high-level radioactive waste developed in Sweden by Svensk Kärnbränslehantering AB (SKB) by appointment from Statens Strålskyddsinstitu ...
process. In Switzerland, the Federal Council approved in 2008, the plan for the deep geological repository for radioactive waste.


Remediation

Algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular micr ...
has shown selectivity for
strontium Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is e ...
in studies, where most plants used in bioremediation have not shown selectivity between calcium and strontium, often becoming saturated with calcium, which is present in greater quantities in nuclear waste. Strontium-90 is a
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
byproduct produced by nuclear reactors used in
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced b ...
. It is a component of nuclear waste and spent nuclear fuel. The half life is long, around 30 years, and is classified as high-level waste. Researchers have looked at the bioaccumulation of strontium by '' Scenedesmus spinosus'' (
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular micr ...
) in simulated wastewater. The study claims a highly selective biosorption capacity for strontium of S. spinosus, suggesting that it may be appropriate for use of nuclear wastewater. A study of the pond alga ''
Closterium moniliferum ''Closterium'' is a genus of unicellular charophyte green algae in the family Closteriaceae.See the NCBIbr>webpage on Closterium Data extracted from the Taxonomy ''Closterium regulare'' was first described from Lower Normandy by Brebisson. ...
'' using non-radioactive strontium found that varying the ratio of
barium Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
to strontium in water improved strontium selectivity.


Risks

Spent nuclear fuel stays a radiation hazard for extended periods of time with
Half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
s as high as 24,000 years. For example 10 years after removal from a reactor, the surface dose rate for a typical spent fuel assembly still exceeds 10,000 rem/hour – far greater than the fatal whole-body dose for humans of about 500 rem received all at once. There is debate over whether spent fuel stored in a pool is susceptible to incidents such as earthquakes or terrorist attacks that could potentially result in a release of radiation. In the rare occurrence of a fuel failure during normal operation, the primary coolant can enter the element. Visual techniques are normally used for the postirradiation inspection of fuel bundles. Since the
September 11 attacks The September 11 attacks, commonly known as 9/11, were four coordinated suicide terrorist attacks carried out by al-Qaeda against the United States on Tuesday, September 11, 2001. That morning, nineteen terrorists hijacked four commer ...
the Nuclear Regulatory Commission has instituted a series of rules mandating that all fuel pools be impervious to natural disaster and terrorist attack. As a result, used fuel pools are encased in a steel liner and thick concrete, and are regularly inspected to ensure resilience to earthquakes, tornadoes, hurricanes, and
seiche A seiche ( ) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related phenomena have been observed on lakes, reservoirs, swimming pools, bays, harbors, caves and seas. The key requirement for formation of ...
s.


See also

*
Nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced b ...
*
Spent nuclear fuel shipping cask A nuclear flask is a shipping container that is used to transport active nuclear materials between nuclear power station and spent fuel reprocessing facilities. Each shipping container is designed to maintain its integrity under normal transport ...
*
Nuclear meltdown A nuclear meltdown (core meltdown, core melt accident, meltdown or partial core melt) is a severe nuclear reactor accident that results in core damage from overheating. The term ''nuclear meltdown'' is not officially defined by the Internatio ...


References

{{Nuclear technology, state=collapsed Nuclear fuels Nuclear reprocessing Radioactive waste