HOME
The Info List - Speech


--- Advertisement ---



Speech
Speech
is the vocalized form of communication used by humans and some animals, which is based upon the syntactic combination of items drawn from the lexicon. Each spoken word is created out of the phonetic combination of a limited set of vowel and consonant speech sound units (phonemes). These vocabularies, the syntax that structures them, and their sets of speech sound units differ, creating many thousands of different, and mutually unintelligible, human languages. The vocal abilities that enable humans to produce speech also enable them to sing. A gestural form of human communication exists for the deaf in the form of sign language. Speech
Speech
in some cultures has become the basis of written language, often one that differs in its vocabulary, syntax and phonetics from its associated spoken one, a situation called diglossia. In addition to its use in communication, it is suggested by some psychologists such as Lev Vygotsky
Lev Vygotsky
that speech is internally used in mental processes to enhance and organize cognition in the form of an interior monologue. Speech
Speech
is researched in terms of the speech production and speech perception of the sounds used in vocal language. Other research topics concern speech repetition, the ability to map heard spoken words into the vocalizations needed to recreate them, which plays a key role in vocabulary expansion in children and speech errors. Several academic disciplines study these; including acoustics, psychology, speech pathology, linguistics, cognitive science, communication studies, otolaryngology and computer science. Another area of research is how the human brain in its different areas such as the Broca's area
Broca's area
and Wernicke's area
Wernicke's area
underlies speech. It is controversial how far human speech is unique; in that animals also communicate with vocalizations. While none in the wild have comparably large vocabularies, research upon the nonverbal abilities of language trained apes such as Washoe and Kanzi
Kanzi
raises the possibility that they might have these capabilities. The evolutionary origins of speech are unknown and subject to much debate and speculation.

Contents

1 Production

1.1 Speech
Speech
Errors

2 Perception 3 Repetition 4 Problems involving speech 5 Brain
Brain
physiology

5.1 The classical model 5.2 Modern research

6 See also 7 References 8 Further reading 9 External links

Production[edit] Main articles: Speech production
Speech production
and Linguistics Speech production
Speech production
is a multi-step process by which thoughts are generated into spoken utterances. Production involves the selection of appropriate words and the appropriate form of those words from the lexicon and morphology, and the organization of those words through the syntax. Then, the phonetic properties of the words are retrieved and the sentence is uttered through the articulations associated with those phonetic properties.[1] In linguistics (articulatory phonetics), articulation refers to how the tongue, lips, jaw, vocal cords, and other speech organs used to produce sounds are used to make sounds. Speech
Speech
sounds are categorized by manner of articulation and place of articulation. Place of articulation refers to where the airstream in the mouth is constricted. Manner of articulation
Manner of articulation
refers to the manner in which the speech organs interact, such as how closely the air is restricted, what form of airstream is used (e.g. pulmonic, implosive, ejectives, and clicks), whether or not the vocal cords are vibrating, and whether the nasal cavity is opened to the airstream.[2] The concept is primarily used for the production of consonants, but can be used for vowels in qualities such as voicing and nasalization. For any place of articulation, there may be several manners of articulation, and therefore several homorganic consonants. Normal human speech is pulmonic, produced with pressure from the lungs, which creates phonation in the glottis in the larynx, which is then modified by the vocal tract and mouth into different vowels and consonants. However humans can pronounce words without the use of the lungs and glottis in alaryngeal speech, of which there are three types: esophageal speech, pharyngeal speech and buccal speech (better known as Donald Duck talk). Speech
Speech
Errors[edit] Main article: Speech
Speech
error Speech production
Speech production
is a complex activity, and as a consequence errors are common, especially in children. Speech
Speech
errors come in many forms and are often used to provide evidence to support hypotheses about the nature of speech.[3] As a result, speech errors are often used in the construction of models for language production and child language acquisition. For example, the fact that children often make the error of over-regularizing the -ed past tense suffix in English (e.g. saying 'singed' instead of 'sang') shows that the regular forms are acquired earlier.[4][5] Speech
Speech
errors associated with certain kinds of aphasia have been used to map certain components of speech onto the brain and see the relation between different aspects of production: for example, the difficulty of expressive aphasia patients in producing regular past-tense verbs, but not irregulars like 'sing-sang' has been used to demonstrate that regular inflected forms of a word are not individually stored in the lexicon, but produced from affixation of the base form.[6] Perception[edit] Main article: Speech
Speech
perception Speech perception
Speech perception
refers to the processes by which humans can interpret and understand the sounds used in language. The study of speech perception is closely linked to the fields of phonetics and phonology in linguistics and cognitive psychology and perception in psychology. Research in speech perception seeks to understand how listeners recognize speech sounds and use this information to understand spoken language. Research into speech perception also has applications in building computer systems that can recognize speech, as well as improving speech recognition for hearing- and language-impaired listeners.[7] Speech perception
Speech perception
is categorical, in that people put the sounds they hear into categories rather than perceiving them as a spectrum. People are more likely to be able to hear differences in sounds across categorical boundaries than within them. A good example of this is voice onset time (VOT). For example, Hebrew speakers, who distinguish voiced /b/ from voiceless /p/, will more easily detect a change in VOT from -10 ( perceived as /b/ ) to 0 ( perceived as /p/ ) than a change in VOT from +10 to +20, or -10 to -20, despite this being an equally large change on the VOT spectrum.[8] Repetition[edit] Main article: Speech
Speech
repetition In speech repetition, speech being heard is quickly turned from sensory input into motor instructions needed for its immediate or delayed vocal imitation (in phonological memory). This type of mapping plays a key role in enabling children to expand their spoken vocabulary. Masur (1995) found that how often children repeat novel words versus those they already have in their lexicon is related to the size of their lexicon later on, with young children who repeat more novel words having a larger lexicon later in development. Speech repetition could help facilitate the acquisition of this larger lexicon.[9] Problems involving speech[edit] See also: Speech-language pathology There are several organic and psychological factors that can affect speech. Among these are:

Diseases and disorders of the lungs or the vocal cords, including paralysis, respiratory infections (bronchitis), vocal fold nodules and cancers of the lungs and throat. Diseases and disorders of the brain, including alogia, aphasias, dysarthria, dystonia and speech processing disorders, where impaired motor planning, nerve transmission, phonological processing or perception of the message (as opposed to the actual sound) leads to poor speech production. Hearing problems, such as otitis media with effusion, and listening problems, auditory processing disorders, can lead to phonological problems. Articulatory problems, such as slurred speech, stuttering, lisping, cleft palate, ataxia, or nerve damage leading to problems in articulation. Tourette syndrome
Tourette syndrome
and tics can also affect speech. Various congenital and acquired tongue diseases can affect speech as can motor neuron disease. In addition to dysphasia, anomia and auditory processing disorder can impede the quality of auditory perception, and therefore, expression. Those who are Hard of Hearing or deaf may be considered to fall into this category.

Brain
Brain
physiology[edit] The classical model[edit]

Broca's and Wernicke's areas.

The classical or Wernicke-Geschwind model of the language system in the brain focuses on Broca's area
Broca's area
in the inferior prefrontal cortex, and Wernicke's area
Wernicke's area
in the posterior superior temporal gyrus on the dominant hemisphere of the brain (typically the left hemisphere for language). In this model, a linguistic auditory signal is first sent from the auditory cortex to Wernicke's area. The lexicon is accessed in Wernicke's area, and these words are sent via the arcuate fasciculus to Broca's area, where morphology, syntax, and instructions for articulation are generated. This is then sent from Broca's area
Broca's area
to the motor cortex for articulation.[10] Paul Broca
Paul Broca
identified an approximate region of the brain in 1861 which, when damaged in two of his patients, caused severe deficits in speech production, where his patients were unable to speak beyond a few monosyllabic words. This deficit, known as Broca's or expressive aphasia, is characterized by difficulty in speech production where speech is slow and labored, function words are absent, and syntax is severely impaired, as in telegraphic speech. In expressive aphasia, speech comprehension is generally less affected except in the comprehension of grammatically complex sentences.[11] Wernicke's area is named after Carl Wernicke, who in 1874 proposed a connection between damage to the posterior area of the left superior temporal gyrus and aphasia, as he noted that not all aphasic patients had suffered damage to the prefrontal cortex.[12] Damage to Wernicke's area produces Wernicke's or receptive aphasia, which is characterized by relatively normal syntax and prosody but severe impairment in lexical access, resulting in poor comprehension and nonsensical or jargon speech.[11] Modern research[edit] Modern models of the neurological systems behind linguistic comprehension and production recognize the importance of Broca's and Wernicke's areas, but are not limited to them nor solely to the left hemisphere. [13] Instead, multiple streams are involved in speech production and comprehension. Damage to the left lateral sulcus has been connected with difficulty in processing and producing morphology and syntax, while lexical access and comprehension of irregular forms (e.g. eat-ate) remain unaffected.[14] See also[edit]

Language
Language
portal Linguistics
Linguistics
portal Freedom of speech
Freedom of speech
portal Sociology portal Anthropology portal

Freedom of speech FOXP2 Imagined speech Index of linguistics articles List of language disorders Spatial hearing loss Speechwriter Talking birds Vocology

References[edit]

^ Levelt, Willem J. M. (1999). "Models of word production". Trends in Cognitive Sciences. 3 (6): 223–232. doi:10.1016/s1364-6613(99)01319-4.  ^ Catford, J.C.; Esling, J.H. (2006). "Articulatory Phonetics". In Brown, Kieth. Encyclopedia of Language
Language
& Linguistics
Linguistics
(2nd ed.). Amsteram: Elsevier Science. pp. 425–442.  ^ Fromkin, Victoria (1973). "Introduction". Speech
Speech
Errors as Linguistic Evidence. The Hague: Mouton. pp. 11–46.  ^ Plunkett, Kim; Juola, Patrick (1999). "A connectionist model of english past tense and plural morphology". Cognitive Science. 23 (4): 463–490. doi:10.1207/s15516709cog2304_4.  ^ Nicoladis, Elena; Paradis, Johanne. "Acquiring Regular and Irregular Past Tense Morphemes in English and French: Evidence From Bilingual Children". Language
Language
Learning. 62 (1): 170–197. doi:10.1111/j.1467-9922.2010.00628.x.  ^ Ullman, Michael T.; et al. (2005). "Neural correlates of lexicon and grammar: Evidence from the production, reading, and judgement of inflection in aphasia". Brain
Brain
and Language. 93: 185–238. doi:10.1016/j.bandl.2004.10.001.  ^ Kennison, Shelia (2013). Introduction to Language
Language
Development. Los Angeles: Sage.  ^ Kishon-Rabin, Liat; Rotshtein, Shira; Taitelbaum, Riki (2002). "Underlying Mechanism for Categorical Perception: Tone-Onset Time and Voice-Onset Time Evidence of Hebrew Voicing". Journal of Basic and Clinical Physiology and Pharmacology. 13 (2): 117–134. doi:10.1515/jbcpp.2002.13.2.117.  ^ Masur, Elise (1995). "Infants' Early Verbal Imitation and Their Later Lexical Development". Merrill-Palmer Quarterly. 41 (3): 286–306.  ^ Kertesz, A. (2005). "Wernicke--GeschwindModel". In L. Nadel, Encyclopedia of cognitive science. Hoboken, NJ: Wiley. ^ a b Hillis, A. E., & Caramazza, A. (2005). "Aphasia". In L. Nadel, Encyclopedia of cognitive science. Hoboken, NJ: Wiley. ^ Wernicke K. (1995). "The aphasia symptom-complex: A psychological study on an anatomical basis (1875)". In Paul Eling. Reader in the History of Aphasia: From sasi(Franz Gall to). 4. Amsterdam: John Benjamins Pub Co. pp. 69–89. ISBN 90-272-1893-5.  ^ Nakai, Y; Jeong, JW; Brown, EC; Rothermel, R; Kojima, K; Kambara, T; Shah, A; Mittal, S; Sood, S; Asano, E (2017). "Three- and four-dimensional mapping of speech and language in patients with epilepsy". Brain. 140: 1351–1370. doi:10.1093/brain/awx051. PMID 28334963. CS1 maint: display-authors (link) ^ Tyler, Lorraine K.; Marslen-Wilson, William (2009). "Fronto-temporal brain systems supporting spoken language comprehension". In Moore, Brian C. J.; Tyler, Lorraine K.; Marslen-Wilson, William D. The Perception of Speech: from sound to meaning. Oxford: Oxford University Press. pp. 193–217. ISBN 978-0-19-956131-5. 

Further reading[edit]

(in French) Fitzpatrick, Élizabeth M. Apprendre à écouter et à parler. University of Ottawa Press, 2013. Available at Project MUSE.

External links[edit]

Find more aboutSpeechat's sister projects

Definitions from Wiktionary Media from Wikimedia Commons News from Wikinews Quotations from Wikiquote Texts from Wikisource Textbooks from Wikibooks Learning resources from Wikiversity

Speaking captured by real-time MRI, YouTube

v t e

Symptoms and signs: Speech
Speech
and voice / Symptoms involving head and neck (R47–R49, 784)

Aphasias

Acute Aphasias

Expressive aphasia Receptive aphasia Conduction aphasia Anomic aphasia Global aphasia Transcortical sensory aphasia Transcortical motor aphasia Mixed transcortical aphasia

Progressive Aphasias

Progressive nonfluent aphasia Semantic dementia Logopenic progressive aphasia

Speech
Speech
disturbances

Speech
Speech
disorder Developmental verbal dyspraxia/‎ Apraxia
Apraxia
of speech Auditory verbal agnosia Dysarthria Schizophasia Aprosodia/Dysprosody Specific language impairment Thought disorder Pressure of speech Derailment Clanging Circumstantiality

Communication
Communication
disorders

Developmental dyslexia/Alexia Agnosia

Astereognosis Prosopagnosia Visual agnosia

Gerstmann syndrome Developmental coordination disorder/Apraxia

Ideomotor apraxia

Dyscalculia/Acalculia Agraphia

Voice disturbances

Dysphonia/Aphonia Bogart–Bacall syndrome

Nose

Post-nasal drip Epistaxis

Mouth

Orofacial pain

Toothache Galvanic pain Barodontalgia

Fremitus Tooth mobility Bruxism Trismus Ageusia Hypogeusia Dysgeusia Parageusia Hypergeusia Xerostomia Halitosis Drooling Hypersalivation

Neck

Neck mass

Cervical lymphadenopathy

Other

Headache Auditory processing disorder Otalgia Velopharyngeal inadequacy Velopharyngeal insufficiency Hypersensitive gag reflex Jaw claudication Hypomimia

v t e

Communication
Communication
studies

Topics and terminology

Biocommunication Broadcasting Communication Computer-mediated communication Conversation History of communication Information Intercultural / Interpersonal / Intrapersonal communication Journalism Mass media Meaning Media ecology Meta-communication Models of communication New media Nonverbal communication Propaganda Reading Speech Symbol Telecommunication Text and conversation theory Writing

Subfields

Communication
Communication
design Communication
Communication
theory Communicology Crisis communication Cross-cultural communication Development communication Discourse analysis Environmental communication Health communication International communication Mass communication Media studies Mediated cross-border communication Organizational communication Political communication Risk communication Science communication Technical communication Visual communication

Related fields

Conversation
Conversation
analysis Critical theory Cultural studies Digital rhetoric Film criticism Heritage interpretation Journalism

photojournalism

Linguistics Philosophy of language Political science Pragmatics Public relations Rhetoric Semiotics Sociolinguistics Sociology of culture Theatre

Scholars

Adorno Barthes Bateson Benjamin Burke Castells Chomsky Craig Fisher Flusser Gerbner Goffman Habermas Horkheimer Huxley Innis Jakobson Janis Johnson Kincaid Lippman Luhmann Marcuse McLuhan Mead Morgan Ong Packard Peirce Postman Quebral Richards Rogers Schramm Tankard Tannen Wertheimer

Category History Journals Organizations Outline

.