Specific force
   HOME

TheInfoList



OR:

Specific force is defined as the non-gravitational force per unit
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
. :\mbox = \frac Specific force (also called g-force and mass-specific force) is measured in meters/second² (m·s−2) which is the units for acceleration. Thus, specific force is not actually a force, but a type of acceleration. However, the (mass-)specific force is not a coordinate-acceleration, but rather a
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
, which is the acceleration relative to free-fall. Forces, specific forces, and
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
s are the same in all reference frames, but coordinate accelerations are frame-dependent. For free bodies, the specific force is the cause of, and a measure of, the body's
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
. The g-force acceleration is the same as the specific force. The acceleration of an object free falling towards the earth depends on the reference frame (it disappears in the free-fall frame, also called the inertial frame), but any g-force "acceleration" will be present in all frames. This specific force is zero for freely-falling objects, since gravity acting alone does not produce g-forces or specific forces.
Accelerometer An accelerometer is a tool that measures proper acceleration. Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame; this is different from coordinate acceleration, which is acc ...
s on the surface of the Earth measure a constant 9.8 m/s^2 even when they are not accelerating (that is, when they do not undergo coordinate acceleration). This is because accelerometers measure the proper acceleration produced by the g-force exerted by the ground (gravity acting alone never produces g-force or specific force). Accelerometers measure specific force (
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
), which is the acceleration relative to free-fall, not the "standard" acceleration that is relative to a coordinate system.


Hydraulics

In open channel
hydraulics Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
, specific force (F_s) has a different meaning: :F_s = \frac + zA where Q is the discharge, g is the acceleration due to gravity, A is the cross-sectional area of flow, and z is the depth of the centroid of flow area A.Chaudhry, M. Hanif "Open Channel Flow" 2nd Ed. (2008) pg.31


See also

*
Acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by t ...
*
Proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...


References

Physical quantities Hydraulic engineering Acceleration {{classicalmechanics-stub