Spacetime foam
   HOME

TheInfoList



OR:

Quantum foam or spacetime foam is a theoretical
quantum fluctuation In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. ...
of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
on very small scales due to
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
. The theory predicts that at these small scales, particles of matter and antimatter are constantly created and destroyed. These subatomic objects are called
virtual particles A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbat ...
. The idea was devised by John Wheeler in 1955.


Background

With an incomplete theory of quantum gravity, it is impossible to be certain what
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
would look like at small scales. However, there is no definitive reason that spacetime needs to be fundamentally smooth. It is possible that instead, in a quantum theory of gravity, spacetime would consist of many small, ever-changing regions in which space and time are not definite, but fluctuate in a foam-like manner.See Derek Leinweber's QCD animations of spacetime foam, as exhibited in Wilczek lecture
/ref> Wheeler suggested that the
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
might imply that over sufficiently small distances and sufficiently brief intervals of time, the "very geometry of spacetime fluctuates". These fluctuations could be large enough to cause significant departures from the smooth spacetime seen at macroscopic scales, giving spacetime a "foamy" character.


Experimental results

The experimental proof of the
Casimir effect In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who pr ...
, which is possibly caused by virtual particles, is strong evidence for the existence of virtual particles. The g2 experiment, which predicts the strength of magnets formed by muons and electrons also supports their existence.Quantum Foam
Don Lincoln, Fermilab, 2014-10-24.
In 2005, during observations of
gamma-ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s arriving from the
blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the ...
Markarian 501 Markarian 501 (or Mrk 501) is a galaxy with a spectrum extending to the highest energy gamma rays. It is a blazar or BL Lac object, which is an active galactic nucleus with a jet that is shooting towards the Earth. In the very-high-energy gamma ...
, MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes detected that, some of the photons at different energy levels arrived at different times, suggesting that some of the photons had moved more slowly and thus were in violation of special relativity's notion that the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
is constant, a discrepancy which could be explained by the irregularity of quantum foam. More recent experiments were, however, unable to confirm the supposed variation on the speed of light due to graininess of space. Other experiments involving the polarization of light from distant gamma ray bursts have also produced contradictory results. More Earth-based experiments are ongoing or proposed.


Constraints on the size of quantum fluctuations

The fluctuations characteristic of a spacetime foam would be expected to occur on a length scale on the order of the Planck length (≈ 10−35 m), but some models of quantum gravity predict much larger fluctuations. Photons should be slowed down by quantum foam, with the rate depending on the wavelength of the photons. This would violate
Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
. But observations of radiation from nearby quasars by Floyd Stecker of NASA's Goddard Space Flight Center failed to find evidence of violation of
Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
. A foamy spacetime also sets limits on the accuracy with which distances can be measured because photons should diffuse randomly through a spacetime foam, similar to light diffusing by passing through fog. This should cause the image quality of very distant objects observed through telescopes to degrade. X-ray and gamma-ray observations of quasars using NASA's
Chandra X-ray Observatory The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources 1 ...
, the
Fermi Gamma-ray Space Telescope The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is ...
and ground-based gamma-ray observations from the Very Energetic Radiation Imaging Telescope Array (VERITAS) showed no detectable degradation at the farthest observed distances, implying that spacetime is smooth at least down to distances 1000 times smaller than the nucleus of a hydrogen atom, setting a bound on the size of quantum fluctuations of spacetime.


Relation to other theories

The
vacuum fluctuation In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. ...
s provide
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
with a non-zero energy known as
vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experiment ...
.
Spin foam In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structur ...
theory is a modern attempt to make Wheeler's idea
quantitative Quantitative may refer to: * Quantitative research, scientific investigation of quantitative properties * Quantitative analysis (disambiguation) * Quantitative verse, a metrical system in poetry * Statistics, also known as quantitative analysis ...
.


See also

* Geon *
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
*
Holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
*
Lorentzian wormhole A wormhole (Einstein-Rosen bridge) is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate po ...
* Planck time * Stochastic quantum mechanics * String theory *
Wormhole A wormhole ( Einstein-Rosen bridge) is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate p ...
* Loop quantum gravity


Notes


References

* Minkel, JR (24 November 2003)
"Borrowed Time: Interview with Michio Kaku"
''
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...
'' * Swarup, A. (2006)
"Sights set on quantum froth"
''
New Scientist ''New Scientist'' is a magazine covering all aspects of science and technology. Based in London, it publishes weekly English-language editions in the United Kingdom, the United States and Australia. An editorially separate organisation publish ...
'', 189, p. 18, accessed 10 February 2012. {{Quantum mechanics topics Quantum gravity Wormhole theory