Space Shuttle design process
   HOME

TheInfoList



OR:

Before the Apollo 11 Moon landing in
1969 This year is notable for Apollo 11's first landing on the moon. Events January * January 4 – The Government of Spain hands over Ifni to Morocco. * January 5 **Ariana Afghan Airlines Flight 701 crashes into a house on its approach to ...
, NASA began studies of Space Shuttle designs as early as October 1968. The early studies were denoted "Phase A", and in June 1970, "Phase B", which were more detailed and specific. The primary intended use of the Space Shuttle was supporting the future
space station A space station is a spacecraft capable of supporting a human crew in orbit for an extended period of time, and is therefore a type of space habitat. It lacks major propulsion or landing systems. An orbital station or an orbital space station i ...
, ferrying a minimum crew of four and about of cargo, and able to be rapidly turned around for future flights. Two designs emerged as front-runners. One was designed by engineers at the
Manned Spaceflight Center The Lyndon B. Johnson Space Center (JSC) is NASA's center for human spaceflight (originally named the Manned Spacecraft Center), where human spaceflight training, research, and flight control are conducted. It was renamed in honor of the late ...
, and championed especially by George Mueller. This was a two-stage system with delta-winged spacecraft, and generally complex. An attempt to re-simplify was made in the form of the DC-3, designed by Maxime Faget, who had designed the Mercury capsule among other vehicles. Numerous offerings from a variety of commercial companies were also offered but generally fell by the wayside as each NASA lab pushed for its own version. All of this was taking place in the midst of other NASA teams proposing a wide variety of post-Apollo missions, a number of which would cost as much as Apollo or more. As each of these projects fought for funding, the NASA budget was at the same time being severely constrained. Three were eventually presented to Vice President Agnew in 1969. The shuttle project rose to the top, largely due to tireless campaigning by its supporters. By 1970 the shuttle had been selected as the one major project for the short-term post-Apollo time frame. When funding for the program came into question, there were concerns that the project might be canceled. This led to an effort to interest the US Air Force in using the shuttle for their missions as well. The Air Force was mildly interested but demanded a much larger vehicle, far larger than the original concepts, which NASA accepted since it was also beneficial to their own plans. To lower the development costs of the resulting designs, boosters were added, a throw-away fuel tank was adopted, and many other changes were made that greatly lowered the reusability and greatly added to the vehicle and operational costs. With the Air Force's assistance, the system emerged in its operational form.


Decision-making process

In 1969, United States Vice President Spiro Agnew chaired the National Aeronautics and Space Council, which discussed post- Apollo options for human space activities. The recommendations of the Council would heavily influence the decisions of the administration. The Council considered four major options: * A human mission to Mars * Follow-on lunar program * A low Earth orbital infrastructure program * Discontinuing human space activities Based on the advice of the Space Council, President Nixon made the decision to pursue the low Earth orbital infrastructure option. This program mainly consisted of the construction of a
space station A space station is a spacecraft capable of supporting a human crew in orbit for an extended period of time, and is therefore a type of space habitat. It lacks major propulsion or landing systems. An orbital station or an orbital space station i ...
, along with the development of a Space Shuttle. Funding restrictions precluded pursuing the development of both programs simultaneously, however. NASA chose to develop the Space Shuttle program first, and then planned to use the shuttle in order to construct and service a space station.


Shuttle design debate

During the early shuttle studies, there was a debate over the optimal shuttle design that best-balanced capability, development cost, and operational cost. Initially, a fully reusable design was preferred. This involved a very large winged manned booster which would carry a smaller winged manned orbiter. The booster vehicle would lift the orbiter to a certain altitude and speed, then separate. The booster would return and land horizontally, while the orbiter continued into low Earth orbit. After completing its mission, the winged orbiter would re-enter and land horizontally on a runway. The idea was that full reusability would promote lower operating costs. However, further studies showed a huge booster was needed to lift an orbiter with the desired payload capability. In space and aviation systems, the cost is closely related to weight, so this meant the overall vehicle cost would be very high. Both booster and orbiter would have rocket engines plus jet engines for use within the atmosphere, plus separate fuel and control systems for each propulsion mode. In addition, there were concurrent discussions about how much funding would be available to develop the program. Another competing approach was maintaining the Saturn V production line and using its large payload capacity to launch a space station in a few payloads rather than many smaller shuttle payloads. A related concept was servicing the space station using the Air Force Titan III-M to launch a larger Gemini capsule, called " Big Gemini”, or a smaller “glider” version of the shuttle with no main engines and a payload bay. The shuttle supporters answered that given enough launches, a reusable system would have lower overall costs than disposable rockets. If dividing total program costs over a given number of launches, a high shuttle launch rate would result in lower pre-launch costs. This in turn would make the shuttle cost-competitive with or superior to expendable launchers. Some theoretical studies mentioned 55 shuttle launches per year; however, the final design chosen did not support that launch rate. In particular, the maximum external tank production rate was limited to 24 tanks per year at NASA's Michoud Assembly Facility. The combined space station and Air Force payload requirements were not sufficient to reach desired shuttle launch rates. Therefore, the plan was for all future U.S. space launches—space stations, Air Force, commercial satellites, and scientific research—to use only the Space Shuttle. Most other expendable boosters would be phased out. The reusable booster was eventually abandoned due to several factors: high price (combined with limited funding), technical complexity, and development risk. Instead, a partially (not fully) reusable design was selected, where an external propellant tank was discarded for each launch, and the booster rockets and shuttle orbiter were refurbished for reuse. Initially, the orbiter was to carry its own liquid
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or other motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the e ...
. However, studies showed carrying the propellant in an external tank allowed a larger payload bay in an otherwise much smaller craft. It also meant throwing away the tank after each launch, but this was a relatively small portion of operating costs. Earlier designs assumed the winged orbiter would also have jet engines to assist maneuvering in the atmosphere after re-entering. However NASA ultimately chose a gliding orbiter, based partially on experience from previous rocket-then-glide vehicles such as the X-15 and
lifting bodies A lifting body is a fixed-wing aircraft or spacecraft configuration in which the body itself produces lift. In contrast to a flying wing, which is a wing with minimal or no conventional fuselage, a lifting body can be thought of as a fuselage ...
. Omitting the jet engines and their fuel would reduce complexity and increase
payload Payload is the object or the entity which is being carried by an aircraft or launch vehicle. Sometimes payload also refers to the carrying capacity of an aircraft or launch vehicle, usually measured in terms of weight. Depending on the nature of ...
. Another decision was the size of the crew. Some said that the shuttle should not carry more than four, the most that could use ejection seats. A commander, pilot, mission specialist, and payload specialist were sufficient for any mission. NASA expected to carry more
space flight participant Spaceflight participant (russian: участник космического полета, translit=uchastnik kosmicheskogo polyota) is the term used by NASA, Roscosmos, and the Federal Aviation Administration (FAA) for people who travel into space, ...
s as payload specialists, so designed the vehicle to carry more. The last remaining debate was over the nature of the boosters. NASA examined four solutions to this problem: development of the existing Saturn lower stage, simple pressure-fed liquid-fuel engines of a new design, a large single solid rocket, or two (or more) smaller ones. Engineers at NASA's
Marshall Space Flight Center The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama (Huntsville postal address), is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first ...
(where the Saturn V development was managed) were particularly concerned about
solid rocket A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine ...
reliability for manned missions.


Air Force involvement

During the mid-1960s the United States Air Force had both of its major piloted space projects, X-20 Dyna-Soar and Manned Orbiting Laboratory, canceled. This demonstrated its need to cooperate with NASA to place military astronauts in orbit. In turn, by serving Air Force needs, the Shuttle became a truly national system, carrying all military as well as civilian payloads.Day, Dwayne A.
Big Black and the new bird: the NRO and the early Space Shuttle
''The Space Review'', 11 January 2010.
NASA sought Air Force support for the shuttle. After the Six-Day War and the Soviet invasion of Czechoslovakia exposed limitations in the United States
satellite reconnaissance A reconnaissance satellite or intelligence satellite (commonly, although unofficially, referred to as a spy satellite) is an Earth observation satellite or communications satellite deployed for military or intelligence applications. Th ...
network, Air Force involvement emphasized the ability to launch spy satellites southward into polar orbit from Vandenberg AFB. This required higher energies than for lower inclination orbits. The Air Force also hoped that a shuttle could retrieve Soviet satellites and quickly land. It thus desired the ability to land at the Vandenberg liftoff point after one orbit, despite the Earth rotating 1,000 miles beneath the orbital track. This required a larger
delta wing A delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ). Although long studied, it did not find significant applications until the Jet Age, when it proved suitabl ...
size than the earlier simple "DC-3" shuttle. However, NASA also desired this increased maneuvering capability since further studies had shown the DC-3 shuttle design had limitations not initially foreseen. The Air Force launched more than 200 satellite reconnaissance missions between 1959 and 1970, and the military's large volume of payloads would be valuable in making the shuttle more economical. Despite the potential benefits for the Air Force, the military was satisfied with its expendable boosters and did not need or want the shuttle as much as NASA did. Because the space agency needed outside support, the Defense Department (DoD) and the National Reconnaissance Office (NRO) gained primary control over the design process. For example, NASA planned a cargo bay, but NRO specified a bay because it expected future intelligence satellites to become larger. When Faget again proposed a wide payload bay, the military almost immediately insisted on retaining the width. The Air Force also gained the equivalent of the use of one of the shuttles for free despite not paying for the shuttle's development or construction. In exchange for the NASA concessions, the Air Force testified to the Senate Space Committee on the shuttle's behalf in March 1971.Day, Dwayne A.
The spooks and the turkey
''The Space Review'', 20 November 2006.
As another incentive for the military to use the shuttle, Congress reportedly told DoD that it would not pay for any satellites not designed to fit into the shuttle cargo bay. Although NRO did not redesign existing satellites for the shuttle, the vehicle retained the ability to retrieve large cargos such as the KH-9 HEXAGON from orbit for refurbishment, and the agency studied resupplying the satellite in space. The Air Force planned on having its own fleet of shuttles and re-built a separate launch facility originally derived from the canceled Manned Orbiting Laboratory program at Vandenberg called Space Launch Complex Six (SLC-6). However, for various reasons, due in large part to the loss of Space Shuttle ''Challenger'' on January 28, 1986, work on SLC-6 was eventually discontinued no shuttle launches from that location ever taking place. SLC-6 was eventually used for launching the
Lockheed Martin The Lockheed Martin Corporation is an American aerospace, arms, defense, information security, and technology corporation with worldwide interests. It was formed by the merger of Lockheed Corporation with Martin Marietta in March 1995. It ...
-built Athena expendable launch vehicles, which included the successful IKONOS commercial
Earth observation satellite An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation (EO) from orbit, including spy satellites and similar ones intended for non-military uses such as environmental monitoring, me ...
in September 1999 before being reconfigured once again to handle the new generation of Boeing Delta IV's. The first launch of the Delta IV heavy from SLC-6 occurred in June 2006, launching NROL-22, a classified satellite for the U.S. National Reconnaissance Office (NRO).


Final design

While NASA would likely have chosen liquid boosters had it complete control over the design, the Office of Management and Budget insisted on less expensive solid boosters due to their lower projected development costs.NASA-CR-134338, Mead, L. M., et a
''Space Shuttle System Program Definition Phase B Extension Final Report''
Washington, DC: National Aeronautics and Space Administration, 1972.
While a liquid-fueled booster design provided better performance, lower per-flight costs, less environmental impact and less developmental risk, solid boosters were seen as requiring less funding to develop at a time when the Shuttle program had many different elements competing for limited development funds. The final design which was selected as a winged orbiter with three liquid-fueled engines, a large expendable external tank which held liquid propellant for these engines, and two reusable solid rocket boosters. In the spring of 1972
Lockheed Aircraft Lockheed (originally spelled Loughead) may refer to: Brands and enterprises * Lockheed Corporation, a former American aircraft manufacturer * Lockheed Martin, formed in 1995 by the merger of Lockheed Corporation and Martin Marietta ** Lockheed Ma ...
, McDonnell Douglas, Grumman, and North American Rockwell submitted proposals to build the shuttle. The NASA selection group thought that Lockheed's shuttle was too complex and too expensive, and the company had no experience with building manned spacecraft. McDonnell Douglas's was too expensive and had technical issues. Grumman had an excellent design which also seemed too expensive. North American's shuttle had the lowest cost and most realistic cost projections, its design was the easiest for ongoing maintenance, and the
Apollo 13 Apollo 13 (April 1117, 1970) was the seventh crewed mission in the Apollo space program and the third meant to land on the Moon. The craft was launched from Kennedy Space Center on April 11, 1970, but the lunar landing was aborted aft ...
accident involving North American's command and service module demonstrated its experience with electrical system failures. NASA announced its choice of North American on 26 July 1972. The Space Shuttle program used the
HAL/S HAL/S (''High-order Assembly Language/Shuttle'') is a real-time aerospace programming language compiler and cross-compiler for avionics applications used by NASA and associated agencies ( JPL, etc.). It has been used in many U.S. space projects si ...
programming language. The first microprocessor used was the 8088 and later the
80386 The Intel 386, originally released as 80386 and later renamed i386, is a 32-bit microprocessor introduced in 1985. The first versions had 275,000 transistorsIBM AP-101 The IBM System/4 Pi is a family of avionics computers used, in various versions, on the F-15 Eagle fighter, E-3 Sentry AWACS, Harpoon Missile, NASA's Skylab, MOL, and the Space Shuttle, as well as other aircraft. Development began in 1965, deliv ...
.


Retrospection after three decades

Opinions differ on the lessons of the Shuttle. It was developed with the original development cost and time estimates given to President Richard M. Nixon in 1971, at a cost of
US$ The United States dollar (symbol: $; code: USD; also abbreviated US$ or U.S. Dollar, to distinguish it from other dollar-denominated currencies; referred to as the dollar, U.S. dollar, American dollar, or colloquially buck) is the official ...
6.744 billion in 1971 dollars versus an original $5.15 billion estimate. The operational costs, flight rate, payload capacity, and reliability have been different than anticipated, however.


See also

* ''Buran'' (spacecraft) *
Single-stage-to-orbit A single-stage-to-orbit (SSTO) vehicle reaches orbit from the surface of a body using only propellants and fluids and without expending tanks, engines, or other major hardware. The term usually, but not exclusively, refers to reusable vehicles ...
* Space Shuttle abort modes * Space Shuttle program *
Studied Space Shuttle designs During the lifetime of the Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These involved different ways of increasing cargo and crew capacity, as well as investigating further reusability ...


References


Further reading


YOU in orbit" (''Popular Science'', July 1970)">Dr. Wernher Von Braun – "The Spaceplane that can put YOU in orbit" (''Popular Science'', July 1970)


External links



*[http://www.armaghplanet.com/blog/10-shuttles-which-never-flew.html 10 Space Shuttles which never flew (Lockheed Starclipper, Chrysler SERV, Phase B Shuttles, Rockwell C-1057, Shuttle C, Air Launched Sortie Vehicle (ALSV), Hermes, Buran, Shuttle II, Lockheed Martin VentureStar)] {{Space Shuttle Spacecraft design Space Shuttle program, design