Solvent effects
   HOME

TheInfoList



OR:

In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
, solvent effects are the influence of a
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
on
chemical reactivity In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy. ''Reactivity'' refers to: * the chemical reactions of a single su ...
or molecular associations. Solvents can have an effect on
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
,
stability Stability may refer to: Mathematics *Stability theory, the study of the stability of solutions to differential equations and dynamical systems ** Asymptotic stability ** Linear stability ** Lyapunov stability ** Orbital stability ** Structural sta ...
and
reaction rate The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per uni ...
s and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction. A
solute In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent ...
dissolves in a solvent when solvent-solute interactions are more favorable than solute-solute interaction.


Effects on stability

Different solvents can affect the
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
of a reaction by differential stabilization of the reactant or product. The equilibrium is shifted in the direction of the substance that is preferentially stabilized. Stabilization of the reactant or product can occur through any of the different
non-covalent interactions In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The ...
with the solvent such as
H-bonding In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
, dipole-dipole interactions, van der Waals interactions etc.


Acid-base equilibria

The ionization equilibrium of an acid or a base is affected by a solvent change. The effect of the solvent is not only because of its acidity or basicity but also because of its
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
and its ability to preferentially solvate and thus stabilize certain species in acid-base equilibria. A change in the solvating ability or dielectric constant can thus influence the acidity or basicity. In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then
acetonitrile Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula and structure . This colourless liquid is the simplest organic nitrile ( hydrogen cyanide is a simpler nitrile, but the cyanide anion is not clas ...
. Consider the following acid dissociation equilibrium: :HA A + H+ Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile. Ionization - and, thus, acidity - would be greatest in water and lesser in DMSO and Acetonitrile, as seen in the table below, which shows p''K''a values at 25 °C for acetonitrile (ACN) and dimethyl sulfoxide (DMSO) and water.


Keto–enol equilibria

Many
carbonyl In organic chemistry, a carbonyl group is a functional group composed of a carbon atom double-bonded to an oxygen atom: C=O. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containi ...
compounds exhibit keto–enol tautomerism. This effect is especially pronounced in 1,3-dicarbonyl compounds that can form hydrogen-bonded enols. The
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
is dependent upon the solvent polarity, with the ''cis''-enol form predominating at low polarity and the diketo form predominating at high polarity. The intramolecular H-bond formed in the ''cis''-enol form is more pronounced when there is no competition for intermolecular H-bonding with the solvent. As a result, solvents of low polarity that do not readily participate in H-bonding allow ''cis''-enolic stabilization by intramolecular H-bonding.


Effects on reaction rates

Often, reactivity and reaction mechanisms are pictured as the behavior of isolated molecules in which the solvent is treated as a passive support. However, the nature of the solvent can actually influence reaction rates and order of a chemical reaction. Performing a reaction without solvent can affect reaction-rate for reactions with
bimolecular In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reactionAtkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014 and is equal to the sum of stoichiometric coeffic ...
mechanisms, for example, by maximizing the
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', ''number concentration'', ...
of the reagents. Ball milling is one of several mechanochemical techniques where physical methods are used to control reactions rather than solvents are methods are methods for affecting reactions in the absence of solvent.


Equilibrium-solvent effects

Solvents can affect rates through equilibrium-solvent effects that can be explained on the basis of the
transition state theory In chemistry, transition state theory (TST) explains the reaction rates of elementary chemical reactions. The theory assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes. T ...
. In essence, the reaction rates are influenced by differential solvation of the starting material and transition state by the solvent. When the reactant molecules proceed to the transition state, the solvent molecules orient themselves to stabilize the transition state. If the transition state is stabilized to a greater extent than the starting material then the reaction proceeds faster. If the starting material is stabilized to a greater extent than the transition state then the reaction proceeds slower. However, such differential solvation requires rapid reorientational relaxation of the solvent (from the transition state orientation back to the ground-state orientation). Thus, equilibrium-solvent effects are observed in reactions that tend to have sharp barriers and weakly dipolar, rapidly relaxing solvents.


Frictional solvent effects

The equilibrium hypothesis does not stand for very rapid chemical reactions in which the transition state theory breaks down. In such cases involving strongly dipolar, slowly relaxing solvents, solvation of the transition state does not play a very large role in affecting the reaction rate. Instead, dynamic contributions of the solvent (such as
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
,
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, internal pressure, or
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
) play a large role in affecting the reaction rate.


Hughes–Ingold rules

The effect of solvent on elimination and nucleophillic substitution reactions was originally studied by British chemists Edward D. Hughes and
Christopher Kelk Ingold Sir Christopher Kelk Ingold (28 October 1893 – 8 December 1970) was a British chemist based in Leeds and London. His groundbreaking work in the 1920s and 1930s on reaction mechanisms and the electronic structure of organic compounds was resp ...
. Using a simple solvation model that considered only pure electrostatic interactions between ions or dipolar molecules and solvents in initial and transition states, all nucleophilic and elimination reactions were organized into different charge types (neutral, positively charged, or negatively charged). Hughes and Ingold then made certain assumptions about the extent of solvation to be expected in these situations: * increasing magnitude of charge will increase solvation * increasing delocalization will decrease solvation * loss of charge will decrease solvation more than the dispersal of charge The applicable effect of these general assumptions are shown in the following examples: * An increase in solvent polarity accelerates the rates of reactions where a charge is developed in the activated complex from neutral or slightly charged reactant * An increase in solvent polarity decreases the rates of reactions where there is less charge in the activated complex in comparison to the starting materials * A change in solvent polarity will have little or no effect on the rates of reaction when there is little or no difference in charge between the reactants and the activated complex.


Reaction examples


Substitution reactions

The solvent used in substitution reactions inherently determines the nucleophilicity of the
nucleophile In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ar ...
; this fact has become increasingly more apparent as more reactions are performed in the gas phase. As such, solvent conditions significantly affect the performance of a reaction with certain solvent conditions favoring one reaction mechanism over another. For SN1 reactions the solvent's ability to stabilize the intermediate
carbocation A carbocation is an ion with a positively charged carbon atom. Among the simplest examples are the methenium , methanium and vinyl cations. Occasionally, carbocations that bear more than one positively charged carbon atom are also encount ...
is of direct importance to its viability as a suitable solvent. The ability of polar solvents to increase the rate of SN1 reactions is a result of the polar solvent's solvating the reactant intermediate species, i.e., the carbocation, thereby decreasing the intermediate energy relative to the starting material. The following table shows the relative solvolysis rates of ''tert''-butyl chloride with
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main componen ...
(CH3CO2H),
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is ...
(CH3OH), and
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
(H2O). The case for SN2 reactions is quite different, as the lack of solvation on the nucleophile increases the rate of an SN2 reaction. In either case (SN1 or SN2), the ability to either stabilize the transition state (SN1) or destabilize the reactant starting material (SN2) acts to decrease the ΔGactivation and thereby increase the rate of the reaction. This relationship is according to the equation ΔG = –RT ln K (
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature an ...
). The rate equation for SN2 reactions are
bimolecular In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reactionAtkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014 and is equal to the sum of stoichiometric coeffic ...
being first order in Nucleophile and first order in Reagent. The determining factor when both SN2 and SN1 reaction mechanisms are viable is the strength of the Nucleophile. Nuclephilicity and basicity are linked and the more nucleophilic a molecule becomes the greater said nucleophile’s basicity. This increase in basicity causes problems for SN2 reaction mechanisms when the solvent of choice is protic.
Protic solvents In chemistry, a protic solvent is a solvent that has a hydrogen atom bound to an oxygen (as in a hydroxyl group ), a nitrogen (as in an amine group or ), or fluoride (as in hydrogen fluoride). In general terms, any solvent that contains a labile ...
react with strong nucleophiles with good basic character in an acid/base fashion, thus decreasing or removing the nucleophilic nature of the nucleophile. The following table shows the effect of solvent polarity on the relative reaction rates of the SN2 reaction of
1-bromobutane 1-Bromobutane is the organobromine compound with the formula CH3(CH2)3Br. It is a colorless liquid, although impure samples appear yellowish. It is insoluble in water, but soluble in organic solvents. It is a primarily used as a source of the buty ...
with
azide In chemistry, azide is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant appli ...
(N3). There is a noticeable increase in reaction rate when changing from a protic solvent to an aprotic solvent. This difference arises from acid/base reactions between protic solvents (not aprotic solvents) and strong nucleophiles. While it is true that
steric effects Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
also affect the relative reaction rates, however, for demonstration of principle for solvent polarity on SN2 reaction rates, steric effects may be neglected. A comparison of SN1 to SN2 reactions is to the right. On the left is an SN1 reaction coordinate diagram. Note the decrease in ΔGactivation for the polar-solvent reaction conditions. This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔEa, ΔΔGactivation. On the right is an SN2 reaction coordinate diagram. Note the decreased ΔGactivation for the non-polar-solvent reaction conditions. Polar solvents stabilize the reactants to a greater extent than the non-polar-solvent conditions by solvating the negative charge on the nucleophile, making it less available to react with the electrophile. 700 px, center, Solvent effects on SN1 and SN2 reactions


Transition-metal-catalyzed reactions

The reactions involving charged transition metal complexes (cationic or anionic) are dramatically influenced by solvation, especially in the polar media. As high as 30-50 kcal/mol changes in the potential energy surface (activation energies and relative stability) were calculated if the charge of the metal species was changed during the chemical transformation.


Free radical syntheses

Many free radical-based syntheses show large kinetic solvent effects that can reduce the rate of reaction and cause a planned reaction to follow an unwanted pathway.


See also

*
Cage effect In chemistry, the cage effect (also known as geminate recombination) describes how the properties of a molecule are affected by its surroundings. First introduced by Franck and Rabinowitch in 1934, the cage effect suggests that instead of actin ...


References

{{Reaction mechanisms Physical chemistry Reaction mechanisms