Solaristor
   HOME

TheInfoList



OR:

A solaristor (from
SOLAR cell A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
transISTOR upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
) is a compact two-terminal self-powered
phototransistor A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons. The package of a photodiode allows light (or infrared or ultraviolet radiation, or X-rays) to reach the sensitive part of the device. The packa ...
. The two-in-one transistor plus solar cell achieves the high-low current modulation by a memresistive effect in the flow of photogenerated carriers. The term was coined by Dr Amador Perez-Tomas working in collaboration with other ICN2 researchers in 2018 when they demonstrated the concept in a
ferroelectric Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the ad ...
-oxide/ organic bulk heterojunction solar cell.


Principle of operation

In a basic solaristor embodiment, the self-powered transistor effect is achieved by the integration of a light absorber layer (a material that absorbs
photon energy Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, ...
) in series with a functional
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
transport layer, which internal conductivity or contact resistance can be modified externally.


Light absorber (solar cell element)

In general, the light absorber is a semiconductor
p–n junction A p–n junction is a boundary or interface between two types of semiconductor materials, p-type and n-type, inside a single crystal of semiconductor. The "p" (positive) side contains an excess of holes, while the "n" (negative) side contai ...
that: * Efficiently harvests photons at various visible wavelengths by the
photoelectric effect The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid sta ...
. * Splits photo-generated
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. ...
s into free electrons and holes. * Brings these free electrons and holes toward their respective outer electrodes by means of an internal field. Additionally, in
thin-film solar cell A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially use ...
s, buffer electron and hole semiconductor transport layers are introduced at the respective metal electrodes to avoid electron-hole recombination and to remove the metal/absorber
Schottky barrier A Schottky barrier, named after Walter H. Schottky, is a potential energy barrier for electrons formed at a metal–semiconductor junction. Schottky barriers have rectifying characteristics, suitable for use as a diode. One of the primary ch ...
.


Conductivity modulator (transistor element)

A solaristor effect is achieved by modifying the internal field properties or the overall conductivity of the solar cell. Ferroelectric solaristors. One possibility is the use of
ferroelectric Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the ad ...
semiconductors as transport layers. A ferroelectric layer can be seen as a semiconductor with switchable surface charge polarity. Because of this tuneable dipole effect, ferroelectrics bend their
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called '' band gaps'' or ...
and offsets with respect to adjacent metals and/or semiconductors when switching the ferroelectric polarization so that the overall conductivity can be tuned orders of magnitude.


Two-terminal phototransistors

Conventional
photodiode A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons. The package of a photodiode allows light (or infrared or ultraviolet radiation, or X-rays) to reach the sensitive part of the device. The packag ...
s or
photodetector Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or ...
s do not switch as a
phototransistor A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons. The package of a photodiode allows light (or infrared or ultraviolet radiation, or X-rays) to reach the sensitive part of the device. The packa ...
does when biased through its third terminal (gate). An additional advantage of a solaristor is, therefore, the potential reduction of the standard phototransistor's area and interconnection complexity. By using solaristors, it would be possible in theory to replace the in-plane three-electrode architecture by a vertical, two-electrode photodiode-like architecture in systems like photo-sensors, cameras, or displays.


See also

*
Anomalous photovoltaic effect The anomalous photovoltaic effect (APE), also called the bulk photovoltaic effect in certain cases, is a type of a photovoltaic effect which occurs in certain semiconductors and insulators. The "anomalous" refers to those cases where the photovoltag ...
*
Digital electronics Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals. Digital electronic circuits are usu ...
*
Energy harvesting Energy harvesting (EH, also known as power harvesting or energy scavenging or ambient power) is the process by which energy is derived from external sources (e.g., solar power, thermal energy, wind energy, salinity gradients, and kinetic ener ...
*
Third-generation photovoltaic cell Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconduct ...
*
Very Large Scale Integration Very large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (Metal Oxide Semiconductor) ...


References

{{Authority control Transistors Photovoltaics Electrical components Semiconductor devices