Solar irradiance is the power per unit area received from the Sun in the form of electromagnetic radiation as measured in the wavelength range of the measuring instrument. The solar irradiance is measured in watts per square metre (W/m2) in SI units. Solar irradiance is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment (joule per square metre, J/m2) during that time period. This integrated solar irradiance is called solar irradiation, solar exposure, solar insolation, or insolation.
Irradiance may be measured in space or at the Earth's surface after atmospheric absorption and scattering. Irradiance in space is a function of distance from the Sun, the solar cycle, and cross-cycle changes.[1] Irradiance on the Earth's surface additionally depends on the tilt of the measuring surface, the height of the sun above the horizon, and atmospheric conditions.[2] Solar irradiance affects plant metabolism and animal behavior.[3]
The study and measurement of solar irradiance have several important applications, including the prediction of energy generation from solar power plants, the heating and cooling loads of buildings, and climate modeling and weather forecasting.
The study and measurement of solar irradiance have several important applications, including the prediction of energy generation from solar power plants, the heating and cooling loads of buildings, and climate modeling and weather forecasting.
There are several measured types of solar irradiance.
The SI unit of irradiance is watt per square metre (W/m2, which may also be written Wm−2).
An alternative unit of measure is the Langley (1 thermochemical calorie per square centimeter or 41,840 J/m2) per unit time.
The solar energy industry uses watt-hour per square metre (Wh/m2) per unit time[
The SI unit of irradiance is watt per square metre (W/m2, which may also be written Wm−2).
An alternative unit of measure is the Langley (1 thermochemical calorie per square centimeter or 41,840 J/m2) per unit time.
The solar energy industry uses watt-hour per square metre (Wh/m2) per unit time[citation needed]. The relation to the SI unit is thus:
An alternative unit of measure is the Langley (1 thermochemical calorie per square centimeter or 41,840 J/m2) per unit time.
The solar energy industry uses watt-hour per square metre (Wh/m2) per unit time[citation needed]. The relation to the SI unit is thus:
where a, b and c are arc lengths, in radians, of the sides of a spherical triangle. C is the angle in the vertex opposite the side which has arc length c. Applied to the calculation of solar zenith angle Θ, the following applies to the spherical law of cosines: