Separable ordinary differential equation
   HOME

TheInfoList



OR:

In mathematics, a differential equation is an equation that relates one or more unknown
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s and their
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
s. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
,
economics Economics () is the social science that studies the production, distribution, and consumption of goods and services. Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics analyzes ...
, and
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a
closed-form expression In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations (e.g., + − × ÷), and functions (e.g., ''n''th ro ...
for the solutions is not available, solutions may be approximated numerically using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many
numerical methods Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
have been developed to determine solutions with a given degree of accuracy.


History

Differential equations first came into existence with the invention of calculus by Newton and
Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of ma ...
. In Chapter 2 of his 1671 work ''Methodus fluxionum et Serierum Infinitarum'', Isaac Newton listed three kinds of differential equations: :\begin \frac &= f(x) \\ pt \frac &= f(x, y) \\ pt x_1 \frac &+ x_2 \frac = y \end In all these cases, is an unknown function of (or of and ), and is a given function. He solves these examples and others using infinite series and discusses the non-uniqueness of solutions.
Jacob Bernoulli Jacob Bernoulli (also known as James or Jacques; – 16 August 1705) was one of the many prominent mathematicians in the Bernoulli family. He was an early proponent of Leibnizian calculus and sided with Gottfried Wilhelm Leibniz during the Le ...
proposed the
Bernoulli differential equation In mathematics, an ordinary differential equation is called a Bernoulli differential equation if it is of the form : y'+ P(x)y = Q(x)y^n, where n is a real number. Some authors allow any real n, whereas others require that n not be 0 or 1. The ...
in 1695. This is an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
of the form : y'+ P(x)y = Q(x)y^n\, for which the following year Leibniz obtained solutions by simplifying it. Historically, the problem of a vibrating string such as that of a musical instrument was studied by
Jean le Rond d'Alembert Jean-Baptiste le Rond d'Alembert (; ; 16 November 1717 – 29 October 1783) was a French mathematician, mechanician, physicist, philosopher, and music theorist. Until 1759 he was, together with Denis Diderot, a co-editor of the '' Encyclopéd ...
,
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
, Daniel Bernoulli, and Joseph-Louis Lagrange. In 1746, d’Alembert discovered the one-dimensional
wave equation The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and seism ...
, and within ten years Euler discovered the three-dimensional wave equation.Speiser, David.
Discovering the Principles of Mechanics 1600-1800
', p. 191 (Basel: Birkhäuser, 2008).
The
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
was developed in the 1750s by Euler and Lagrange in connection with their studies of the
tautochrone A tautochrone or isochrone curve (from Greek prefixes tauto- meaning ''same'' or iso- ''equal'', and chrono ''time'') is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independe ...
problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in a fixed amount of time, independent of the starting point. Lagrange solved this problem in 1755 and sent the solution to Euler. Both further developed Lagrange's method and applied it to
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to object ...
, which led to the formulation of
Lagrangian mechanics In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph- ...
. In 1822, Fourier published his work on
heat flow Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
in ''Théorie analytique de la chaleur'' (The Analytic Theory of Heat), in which he based his reasoning on
Newton's law of cooling In the study of heat transfer, Newton's law of cooling is a physical law which states that The rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment. The law is frequently q ...
, namely, that the flow of heat between two adjacent molecules is proportional to the extremely small difference of their temperatures. Contained in this book was Fourier's proposal of his heat equation for conductive diffusion of heat. This partial differential equation is now taught to every student of mathematical physics.


Example

In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, the motion of a body is described by its position and velocity as the time value varies.
Newton's laws Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motio ...
allow these variables to be expressed dynamically (given the position, velocity, acceleration and various forces acting on the body) as a differential equation for the unknown position of the body as a function of time. In some cases, this differential equation (called an
equation of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Ver ...
) may be solved explicitly. An example of modeling a real-world problem using differential equations is the determination of the velocity of a ball falling through the air, considering only gravity and air resistance. The ball's acceleration towards the ground is the acceleration due to gravity minus the deceleration due to air resistance. Gravity is considered constant, and air resistance may be modeled as proportional to the ball's velocity. This means that the ball's acceleration, which is a derivative of its velocity, depends on the velocity (and the velocity depends on time). Finding the velocity as a function of time involves solving a differential equation and verifying its validity.


Types

Differential equations can be divided into several types. Apart from describing the properties of the equation itself, these classes of differential equations can help inform the choice of approach to a solution. Commonly used distinctions include whether the equation is ordinary or partial, linear or non-linear, and homogeneous or heterogeneous. This list is far from exhaustive; there are many other properties and subclasses of differential equations which can be very useful in specific contexts.


Ordinary differential equations

An
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
(''ODE'') is an equation containing an unknown function of one real or complex variable , its derivatives, and some given functions of . The unknown function is generally represented by a
variable Variable may refer to: * Variable (computer science), a symbolic name associated with a value and whose associated value may be changed * Variable (mathematics), a symbol that represents a quantity in a mathematical expression, as used in many ...
(often denoted ), which, therefore, ''depends'' on . Thus is often called the independent variable of the equation. The term "''ordinary''" is used in contrast with the term partial differential equation, which may be with respect to ''more than'' one independent variable.
Linear differential equation In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b ...
s are the differential equations that are
linear Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
in the unknown function and its derivatives. Their theory is well developed, and in many cases one may express their solutions in terms of
integrals In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with d ...
. Most ODEs that are encountered in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
are linear. Therefore, most
special functions Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined b ...
may be defined as solutions of linear differential equations (see Holonomic function). As, in general, the solutions of a differential equation cannot be expressed by a
closed-form expression In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations (e.g., + − × ÷), and functions (e.g., ''n''th ro ...
,
numerical methods Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
are commonly used for solving differential equations on a computer.


Partial differential equations

A partial differential equation (''PDE'') is a differential equation that contains unknown multivariable functions and their
partial derivatives In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Pa ...
. (This is in contrast to ordinary differential equations, which deal with functions of a single variable and their derivatives.) PDEs are used to formulate problems involving functions of several variables, and are either solved in closed form, or used to create a relevant
computer model Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be deter ...
. PDEs can be used to describe a wide variety of phenomena in nature such as
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' b ...
,
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
, electrostatics,
electrodynamics In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
, fluid flow, elasticity, or
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
. These seemingly distinct physical phenomena can be formalized similarly in terms of PDEs. Just as ordinary differential equations often model one-dimensional dynamical systems, partial differential equations often model
multidimensional systems In mathematical systems theory, a multidimensional system or m-D system is a system in which not only one independent variable exists (like time), but there are several independent variables. Important problems such as factorization and stability ...
. Stochastic partial differential equations generalize partial differential equations for modeling
randomness In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual rand ...
.


Non-linear differential equations

A non-linear differential equation is a differential equation that is not a linear equation in the unknown function and its derivatives (the linearity or non-linearity in the arguments of the function are not considered here). There are very few methods of solving nonlinear differential equations exactly; those that are known typically depend on the equation having particular
symmetries Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
. Nonlinear differential equations can exhibit very complicated behaviour over extended time intervals, characteristic of
chaos Chaos or CHAOS may refer to: Arts, entertainment and media Fictional elements * Chaos (''Kinnikuman'') * Chaos (''Sailor Moon'') * Chaos (''Sesame Park'') * Chaos (''Warhammer'') * Chaos, in ''Fabula Nova Crystallis Final Fantasy'' * Cha ...
. Even the fundamental questions of existence, uniqueness, and extendability of solutions for nonlinear differential equations, and well-posedness of initial and boundary value problems for nonlinear PDEs are hard problems and their resolution in special cases is considered to be a significant advance in the mathematical theory (cf. Navier–Stokes existence and smoothness). However, if the differential equation is a correctly formulated representation of a meaningful physical process, then one expects it to have a solution. Linear differential equations frequently appear as
approximations An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ...
to nonlinear equations. These approximations are only valid under restricted conditions. For example, the harmonic oscillator equation is an approximation to the nonlinear pendulum equation that is valid for small amplitude oscillations (see below).


Equation order

Differential equations are described by their order, determined by the term with the highest derivatives. An equation containing only first derivatives is a ''first-order differential equation'', an equation containing the
second derivative In calculus, the second derivative, or the second order derivative, of a function is the derivative of the derivative of . Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, ...
is a ''second-order differential equation'', and so on. Differential equations that describe natural phenomena almost always have only first and second order derivatives in them, but there are some exceptions, such as the thin film equation, which is a fourth order partial differential equation.


Examples

In the first group of examples ''u'' is an unknown function of ''x'', and ''c'' and ''ω'' are constants that are supposed to be known. Two broad classifications of both ordinary and partial differential equations consist of distinguishing between ''
linear Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
'' and ''nonlinear'' differential equations, and between ''homogeneous'' differential equations and ''heterogeneous'' ones. * Heterogeneous first-order linear constant coefficient ordinary differential equation: *: \frac = cu+x^2. * Homogeneous second-order linear ordinary differential equation: *: \frac - x\frac + u = 0. * Homogeneous second-order linear constant coefficient ordinary differential equation describing the harmonic oscillator: *: \frac + \omega^2u = 0. * Heterogeneous first-order nonlinear ordinary differential equation: *: \frac = u^2 + 4. * Second-order nonlinear (due to sine function) ordinary differential equation describing the motion of a
pendulum A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward th ...
of length ''L'': *: L\frac + g\sin u = 0. In the next group of examples, the unknown function ''u'' depends on two variables ''x'' and ''t'' or ''x'' and ''y''. * Homogeneous first-order linear partial differential equation: *: \frac + t\frac = 0. * Homogeneous second-order linear constant coefficient partial differential equation of elliptic type, the
Laplace equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \n ...
: *: \frac + \frac = 0. * Homogeneous third-order non-linear partial differential equation: *: \frac = 6u\frac - \frac.


Existence of solutions

Solving differential equations is not like solving
algebraic equations In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' ...
. Not only are their solutions often unclear, but whether solutions are unique or exist at all are also notable subjects of interest. For first order initial value problems, the
Peano existence theorem In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees t ...
gives one set of circumstances in which a solution exists. Given any point (a, b) in the xy-plane, define some rectangular region Z, such that Z = , mtimes
, p The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...
/math> and (a, b) is in the interior of Z. If we are given a differential equation \frac = g(x, y) and the condition that y = b when x = a, then there is locally a solution to this problem if g(x, y) and \frac are both continuous on Z. This solution exists on some interval with its center at a. The solution may not be unique. (See
Ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
for other results.) However, this only helps us with first order
initial value problem In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or ...
s. Suppose we had a linear initial value problem of the nth order: :f_(x)\frac + \cdots + f_(x)\frac + f_(x)y = g(x) such that :\begin y(x_) &= y_, & y'(x_) &= y'_, & y''(x_) &= y''_, & \ldots \end For any nonzero f_(x), if \ and g are continuous on some interval containing x_, y is unique and exists.


Related concepts

* A
delay differential equation In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called tim ...
(DDE) is an equation for a function of a single variable, usually called time, in which the derivative of the function at a certain time is given in terms of the values of the function at earlier times. * An
integro-differential equation In mathematics, an integro-differential equation is an equation that involves both integrals and derivatives of a function. General first order linear equations The general first-order, linear (only with respect to the term involving derivati ...
(IDE) is an equation that combines aspects of a differential equation and an
integral equation In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ...
. * A
stochastic differential equation A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to model various phenomena such as stock p ...
(SDE) is an equation in which the unknown quantity is a stochastic process and the equation involves some known stochastic processes, for example, the
Wiener process In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is ...
in the case of diffusion equations. *A stochastic partial differential equation (SPDE) is an equation that generalizes SDEs to include space-time noise processes, with applications in quantum field theory and statistical mechanics. * An ultrametric pseudo-differential equation is an equation which contains
p-adic numbers In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensio ...
in an
ultrametric space In mathematics, an ultrametric space is a metric space in which the triangle inequality is strengthened to d(x,z)\leq\max\left\. Sometimes the associated metric is also called a non-Archimedean metric or super-metric. Although some of the theorems ...
. Mathematical models that involve ultrametric pseudo-differential equations use pseudo-differential operators instead of differential operators. * A
differential algebraic equation In electrical engineering, a differential-algebraic system of equations (DAEs) is a system of equations that either contains differential equations and algebraic equations, or is equivalent to such a system. In mathematics these are examples of `` ...
(DAE) is a differential equation comprising differential and algebraic terms, given in implicit form.


Connection to difference equations

The theory of differential equations is closely related to the theory of
difference equations In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
, in which the coordinates assume only discrete values, and the relationship involves values of the unknown function or functions and values at nearby coordinates. Many methods to compute numerical solutions of differential equations or study the properties of differential equations involve the approximation of the solution of a differential equation by the solution of a corresponding difference equation.


Applications

The study of differential equations is a wide field in
pure Pure may refer to: Computing * A pure function * A pure virtual function * PureSystems, a family of computer systems introduced by IBM in 2012 * Pure Software, a company founded in 1991 by Reed Hastings to support the Purify tool * Pure-FTPd, F ...
and
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemati ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, and
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
. All of these disciplines are concerned with the properties of differential equations of various types. Pure mathematics focuses on the existence and uniqueness of solutions, while applied mathematics emphasizes the rigorous justification of the methods for approximating solutions. Differential equations play an important role in modeling virtually every physical, technical, or biological process, from celestial motion, to bridge design, to interactions between neurons. Differential equations such as those used to solve real-life problems may not necessarily be directly solvable, i.e. do not have closed form solutions. Instead, solutions can be approximated using
numerical methods Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
. Many fundamental laws of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and chemistry can be formulated as differential equations. In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
and
economics Economics () is the social science that studies the production, distribution, and consumption of goods and services. Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics analyzes ...
, differential equations are used to
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
the behavior of complex systems. The mathematical theory of differential equations first developed together with the sciences where the equations had originated and where the results found application. However, diverse problems, sometimes originating in quite distinct scientific fields, may give rise to identical differential equations. Whenever this happens, mathematical theory behind the equations can be viewed as a unifying principle behind diverse phenomena. As an example, consider the propagation of light and sound in the atmosphere, and of waves on the surface of a pond. All of them may be described by the same second-order partial differential equation, the
wave equation The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and seism ...
, which allows us to think of light and sound as forms of waves, much like familiar waves in the water. Conduction of heat, the theory of which was developed by Joseph Fourier, is governed by another second-order partial differential equation, the heat equation. It turns out that many
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
processes, while seemingly different, are described by the same equation; the Black–Scholes equation in finance is, for instance, related to the heat equation. The number of differential equations that have received a name, in various scientific areas is a witness of the importance of the topic. See
List of named differential equations In mathematics, differential equation is a fundamental concept that is used in many scientific areas. Many of the differential equations that are used have received specific names, which are listed in this article. Pure mathematics *Calabi flo ...
.


Software

Some CAS software can solve differential equations. These CAS software and their commands are worth mentioning: *
Maple ''Acer'' () is a genus of trees and shrubs commonly known as maples. The genus is placed in the family Sapindaceae.Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 nd more or less continuously updated since http ...
: dsolve * Mathematica: DSolve[] * Maxima: ode2(equation, y, x) * SageMath: desolve() * SymPy: sympy.solvers.ode.dsolve(equation) * Xcas: desolve(y'=k*y,y)


See also

*
Exact differential equation In mathematics, an exact differential equation or total differential equation is a certain kind of ordinary differential equation which is widely used in physics and engineering. Definition Given a simply connected and open subset ''D'' of R2 a ...
*
Functional differential equation A functional differential equation is a differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical q ...
* Initial condition *
Integral equations In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ...
*
Numerical methods for ordinary differential equations Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also ...
*
Numerical methods for partial differential equations Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partia ...
*
Picard–Lindelöf theorem In mathematics – specifically, in differential equations – the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cau ...
on existence and uniqueness of solutions *
Recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
, also known as 'difference equation' *
Abstract differential equation In mathematics, an abstract differential equation is a differential equation in which the unknown Function (mathematics), function and its derivatives take values in some generic abstract space (a Hilbert space, a Banach space, etc.). Equations of t ...
*
System of differential equations In mathematics, a system of differential equations is a finite set of differential equations. Such a system can be either linear or non-linear. Also, such a system can be either a system of ordinary differential equations or a system of partial dif ...


References


Further reading

* * * * * * I
University of Michigan Historical Math Collection
* * * *


External links

*
Lectures on Differential Equations
MIT The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the m ...
Open CourseWare Videos
Online Notes / Differential Equations
Paul Dawkins,
Lamar University Lamar University (Lamar or LU) is a public university in Beaumont, Texas. Lamar has been a member of the Texas State University System since 1995. It was the flagship institution of the former Lamar University System. As of the fall of 2021, t ...

Differential Equations
S.O.S. Mathematics

Introduction to modeling by means of differential equations, with critical remarks.
Mathematical Assistant on Web
Symbolic ODE tool, using Maxima
Exact Solutions of Ordinary Differential Equations
MATLAB models
Notes on Diffy Qs: Differential Equations for Engineers
An introductory textbook on differential equations by Jiri Lebl of
UIUC The University of Illinois Urbana-Champaign (U of I, Illinois, University of Illinois, or UIUC) is a public land-grant research university in Illinois in the twin cities of Champaign and Urbana. It is the flagship institution of the Uni ...

Khan Academy Video playlist on differential equations
Topics covered in a first year course in differential equations.
MathDiscuss Video playlist on differential equations
{{Authority control