Self-energy
   HOME

TheInfoList



OR:

In quantum field theory, the energy that a particle has as a result of changes that it causes in its environment defines self-energy \Sigma, and represents the contribution to the particle's
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
, or effective mass, due to interactions between the particle and its environment. In electrostatics, the energy required to assemble the charge distribution takes the form of self-energy by bringing in the constituent charges from infinity, where the electric force goes to zero. In a
condensed matter Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
context relevant to electrons moving in a material, the self-energy represents the potential felt by the electron due to the surrounding medium's interactions with it. Since electrons repel each other the moving electron polarizes, or causes to displace the electrons in its vicinity and then changes the potential of the moving electron fields. These are examples of self-energy.


Characteristics

Mathematically, this energy is equal to the so-called on mass shell value of the proper self-energy ''operator'' (or proper mass ''operator'') in the momentum-energy representation (more precisely, to \hbar times this value). In this, or other representations (such as the space-time representation), the self-energy is pictorially (and economically) represented by means of
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduc ...
s, such as the one shown below. In this particular diagram, the three arrowed straight lines represent particles, or particle propagators, and the wavy line a particle-particle interaction; removing (or ''amputating'') the left-most and the right-most straight lines in the diagram shown below (these so-called ''external'' lines correspond to prescribed values for, for instance, momentum and energy, or
four-momentum In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is ...
), one retains a contribution to the self-energy operator (in, for instance, the momentum-energy representation). Using a small number of simple rules, each Feynman diagram can be readily expressed in its corresponding algebraic form. In general, the on-the-mass-shell value of the self-energy operator in the momentum-energy representation is
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
. In such cases, it is the real part of this self-energy that is identified with the physical self-energy (referred to above as particle's "self-energy"); the inverse of the imaginary part is a measure for the lifetime of the particle under investigation. For clarity, elementary excitations, or
dressed particle In theoretical physics, the term dressed particle refers to a bare particle together with some excitations of other quantum fields that are physically inseparable from the bare particle. For example, a dressed electron includes the cloud of virtua ...
s (see quasi-particle), in interacting systems are distinct from stable particles in vacuum; their state functions consist of complicated superpositions of the
eigenstates In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution i ...
of the underlying many-particle system, which only momentarily, if at all, behave like those specific to isolated particles; the above-mentioned lifetime is the time over which a dressed particle behaves as if it were a single particle with well-defined momentum and energy. The self-energy operator (often denoted by \Sigma_^, and less frequently by M_^) is related to the bare and dressed propagators (often denoted by G_0^ and G_^ respectively) via the Dyson equation (named after
Freeman Dyson Freeman John Dyson (15 December 1923 – 28 February 2020) was an English-American theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrices, mathematical formulation of quantum m ...
): :G = G_0^ + G_0 \Sigma G. Multiplying on the left by the inverse G_0^ of the operator G_0 and on the right by G^ yields :\Sigma = G_0^ - G^. : : The
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
and gluon do not get a mass through
renormalization Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering va ...
because gauge symmetry protects them from getting a mass. This is a consequence of the
Ward identity Ward may refer to: Division or unit * Hospital ward, a hospital division, floor, or room set aside for a particular class or group of patients, for example the psychiatric ward * Prison ward, a division of a penal institution such as a pris ...
. The
W-boson In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and ...
and the
Z-boson In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and ...
get their masses through the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other be ...
; they do undergo mass renormalization through the renormalization of the
electroweak In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
theory. Neutral particles with internal quantum numbers can mix with each other through virtual pair production. The primary example of this phenomenon is the mixing of neutral
kaon KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe. Its first incarnation was developed in 2002 and supported an enhanced version of ...
s. Under appropriate simplifying assumptions this can be described without quantum field theory.


Other uses

In chemistry, the self-energy or Born energy of an ion is the energy associated with the field of the ion itself. In solid state and condensed-matter physics self-energies and a myriad of related
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exa ...
properties are calculated by
Green's function In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if \operatorname is the linear differenti ...
methods and
Green's function (many-body theory) In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from ...
of interacting low-energy excitations on the basis of
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or ' ...
calculations. Self-energies also find extensive application in the calculation of particle transport through open quantum systems and the embedding of sub-regions into larger systems (for example the surface of a semi-infinite crystal).


See also

* Quantum field theory * QED vacuum *
Renormalization Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering va ...
* Self-force *
GW approximation The ''GW'' approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system of electrons. The approximation is that the expansion of the self-energy ''Σ'' in terms of the single particle Green's function ...
*
Wheeler–Feynman absorber theory The Wheeler–Feynman absorber theory (also called the Wheeler–Feynman time-symmetric theory), named after its originators, the physicists Richard Feynman and John Archibald Wheeler, is an interpretation of electrodynamics derived from the assu ...


References

* A. L. Fetter, and J. D. Walecka, ''Quantum Theory of Many-Particle Systems'' (McGraw-Hill, New York, 1971); (Dover, New York, 2003) * J. W. Negele, and H. Orland, ''Quantum Many-Particle Systems'' (Westview Press, Boulder, 1998) * A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski (1963): ''Methods of Quantum Field Theory in Statistical Physics'' Englewood Cliffs: Prentice-Hall. * * A. N. Vasil'ev ''The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics'' (Routledge Chapman & Hall 2004); ; * {{QED Quantum electrodynamics Quantum field theory Renormalization group