Self-assembled monolayer
   HOME

TheInfoList



OR:

Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact strongly with the substrate. This is the case for instance of the two-dimensional supramolecular networks of e.g.
perylenetetracarboxylic dianhydride Perylenetetracarboxylic dianhydride (PTCDA) is an organic dye molecule and an organic semiconductor. It is used as a precursor to a class of molecules known as Rylene dyes, which are useful as pigments and dyes. It is a dark red solid with low s ...
( PTCDA) on gold or of e.g. porphyrins on highly oriented pyrolitic graphite (HOPG). In other cases the molecules possess a head group that has a strong affinity to the substrate and anchors the molecule to it. Such a SAM consisting of a head group, tail and functional end group is depicted in Figure 1. Common head groups include
thiols In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
, silanes,
phosphonates In organic chemistry, phosphonates or phosphonic acids are organophosphorus compounds containing groups (where R = alkyl, aryl, or just hydrogen). Phosphonic acids, typically handled as salts, are generally nonvolatile solids that are poorly ...
, etc. SAMs are created by the
chemisorption Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like cor ...
of "head groups" onto a substrate from either the vapor or liquid phase followed by a slow organization of "tail groups". Initially, at small molecular density on the surface, adsorbate molecules form either a disordered mass of molecules or form an ordered two-dimensional "lying down phase", and at higher molecular coverage, over a period of minutes to hours, begin to form three-dimensional crystalline or semicrystalline structures on the substrate surface. The "head groups" assemble together on the substrate, while the tail groups assemble far from the substrate. Areas of close-packed molecules nucleate and grow until the surface of the substrate is covered in a single monolayer. Adsorbate molecules adsorb readily because they lower the surface free-energy of the substrate and are stable due to the strong chemisorption of the "head groups." These bonds create monolayers that are more stable than the physisorbed bonds of
Langmuir–Blodgett film A Langmuir–Blodgett (LB) film is a nanostructured system formed when Langmuir films—or Langmuir monolayers (LM)—are transferred from the liquid-gas interface to solid supports during the vertical passage of the support through the monolayers ...
s. A
Trichlorosilane Trichlorosilane is an inorganic compound with the formula HCl3Si. It is a colourless, volatile liquid. Purified trichlorosilane is the principal precursor to ultrapure silicon in the semiconductor industry. In water, it rapidly decomposes to pr ...
based "head group", for example in a
FDTS Perfluorodecyltrichlorosilane, also known as FDTS, is a colorless liquid chemical with molecular formula C10 H4 Cl3 F17 Si. FDTS molecules form self-assembled monolayers. They form covalent silicon–oxygen bonds to free hydroxyl (–OH) groups ...
molecule, reacts with a
hydroxyl In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydrox ...
group on a substrate, and forms very stable, covalent bond -Si-O-substratewith an energy of 452 kJ/mol. Thiol-metal bonds are on the order of 100 kJ/mol, making them fairly stable in a variety of temperatures, solvents, and potentials. The monolayer packs tightly due to van der Waals interactions, thereby reducing its own free energy. The adsorption can be described by the
Langmuir adsorption isotherm The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressu ...
if lateral interactions are neglected. If they cannot be neglected, the adsorption is better described by the Frumkin isotherm.


Types

Selecting the type of head group depends on the application of the SAM. Typically, head groups are connected to a molecular chain in which the terminal end can be functionalized (i.e. adding –OH, –NH2, –COOH, or –SH groups) to vary the
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with ...
and interfacial properties. An appropriate substrate is chosen to react with the head group. Substrates can be planar surfaces, such as silicon and metals, or curved surfaces, such as nanoparticles. Alkanethiols are the most commonly used molecules for SAMs. Alkanethiols are molecules with an alkyl chain, (C-C)ⁿ chain, as the back bone, a tail group, and a S-H head group. Other types of interesting molecules include aromatic thiols, of interest in molecular electronics, in which the alkane chain is (partly) replaced by aromatic rings. An example is the dithiol 1,4-Benzenedimethanethiol (SHCH2C6H4CH2SH)). Interest in such dithiols stems from the possibility of linking the two sulfur ends to metallic contacts, which was first used in molecular conduction measurements. Thiols are frequently used on noble metal substrates because of the strong affinity of sulfur for these metals. The sulfur gold interaction is semi-covalent and has a strength of approximately 45 kcal/mol. In addition, gold is an inert and biocompatible material that is easy to acquire. It is also easy to pattern via lithography, a useful feature for applications in nanoelectromechanical systems (NEMS). Additionally, it can withstand harsh chemical cleaning treatments. Recently other chalcogenide SAMs: selenides and tellurides have attracted attention in a search for different bonding characteristics to substrates affecting the SAM characteristics and which could be of interest in some applications such as molecular electronics. Silanes are generally used on nonmetallic oxide surfaces; however monolayers formed from covalent bonds between silicon and carbon or oxygen cannot be considered self assembled because they do not form reversibly. Self-assembled monolayers of thiolates on noble metals are a special case because the metal-metal bonds become reversible after the formation of the thiolate-metal complex. This reversibility is what gives rise to vacancy islands and it is why SAMs of alkanethiolates can be thermally desorbed and undergo exchange with free thiols.


Preparation

Metal substrates for use in SAMs can be produced through
physical vapor deposition Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
techniques, electrodeposition or electroless deposition. Thiol or selenium SAMs produced by adsorption from solution are typically made by immersing a substrate into a dilute solution of alkane thiol in ethanol, though many different solvents can be used besides use of pure liquids. While SAMs are often allowed to form over 12 to 72 hours at room temperature, SAMs of alkanethiolates form within minutes. Special attention is essential in some cases, such as that of dithiol SAMs to avoid problems due to oxidation or photoinduced processes, which can affect terminal groups and lead to disorder and multilayer formation. In this case appropriate choice of solvents, their degassing by inert gasses and preparation in the absence of light is crucial and allows formation of "standing up" SAMs with free –SH groups. Self-assembled monolayers can also be adsorbed from the vapor phase. In some cases when obtaining an ordered assembly is difficult or when different density phases need to be obtained substitutional self-assembly is used. Here one first forms the SAM of a given type of molecules, which give rise to ordered assembly and then a second assembly phase is performed (e.g. by immersion into a different solution). This method has also been used to give information on relative binding strengths of SAMs with different head groups and more generally on self-assembly characteristics.


Characterization

The thicknesses of SAMs can be measured using
ellipsometry Ellipsometry is an optical technique for investigating the dielectric properties (complex refractive index or dielectric function) of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it t ...
and X-ray photoelectron spectroscopy (XPS), which also give information on interfacial properties. The order in the SAM and orientation of molecules can be probed by Near Edge Xray Absorption Fine Structure (NEXAFS) and
Fourier Transform Infrared Spectroscopy Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectra ...
in Reflection Absorption Infrared Spectroscopy (RAIRS) studies. Numerous other spectroscopic techniques are used such as
Second-harmonic generation Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy o ...
(SHG),
Sum-frequency generation Sum-frequency generation (SFG) is a second order nonlinear optical process based on the annihilation of two input photons at angular frequencies \omega_1 and \omega_2 while, simultaneously, one photon at frequency \omega_3 is generated. As with ...
(SFG),
Surface-enhanced Raman scattering Surface-enhanced Raman spectroscopy or surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures such as plasmonic-magnetic silica n ...
(SERS), as well as High-resolution electron energy loss spectroscopy (HREELS). The structures of SAMs are commonly determined using scanning probe microscopy techniques such as
atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the opt ...
(AFM) and
scanning tunneling microscopy A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. ...
(STM). STM has been able to help understand the mechanisms of SAM formation as well as determine the important structural features that lend SAMs their integrity as surface-stable entities. In particular STM can image the shape, spatial distribution, terminal groups and their packing structure. AFM offers an equally powerful tool without the requirement of the SAM being conducting or semi-conducting. AFM has been used to determine chemical functionality, conductance, magnetic properties, surface charge, and frictional forces of SAMs. The scanning vibrating electrode technique (SVET) is a further scanning probe microscopy which has been used to characterize SAMs, with defect free SAMs showing homogeneous activity in SVET. More recently, however, diffractive methods have also been used. The structure can be used to characterize the kinetics and defects found on the monolayer surface. These techniques have also shown physical differences between SAMs with planar substrates and nanoparticle substrates. An alternative characterisation instrument for measuring the self-assembly in real time is dual polarisation interferometry where the refractive index, thickness, mass and birefringence of the self assembled layer are quantified at high resolution. Another method that can be used to measure the self-assembly in real-time is Quartz Crystal Microbalance with Dissipation monitoring technology where the mass and viscoelastic properties of the adlayer are quantified.
Contact angle The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. A given system of solid, liq ...
measurements can be used to determine the surface free-energy which reflects the average composition of the surface of the SAM and can be used to probe the kinetics and thermodynamics of the formation of SAMs. The kinetics of adsorption and temperature induced desorption as well as information on structure can also be obtained in real time by ion scattering techniques such as low energy ion scattering (LEIS) and time of flight direct recoil spectroscopy (TOFDRS).


Defects

Defects due to both external and intrinsic factors may appear. External factors include the cleanliness of the substrate, method of preparation, and purity of the adsorbates. SAMs intrinsically form defects due to the thermodynamics of formation, e.g. thiol SAMs on gold typically exhibit etch pits (monatomic vacancy islands) likely due to extraction of adatoms from the substrate and formation of adatom-adsorbate moieties. Recently, a new type of fluorosurfactants have found that can form nearly perfect monolayer on gold substrate due to the increase of mobility of gold surface atoms.


Nanoparticle properties

The structure of SAMs is also dependent on the curvature of the substrate. SAMs on nanoparticles, including
colloids A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
and nanocrystals, "stabilize the reactive surface of the particle and present organic functional groups at the particle-solvent interface". These organic functional groups are useful for applications, such as
immunoassay An immunoassay (IA) is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoa ...
s or
sensors A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
, that are dependent on chemical composition of the surface.


Kinetics

There is evidence that SAM formation occurs in two steps: an initial fast step of adsorption and a second slower step of monolayer organization. Adsorption occurs at the liquid–liquid, liquid–vapor, and liquid-solid interfaces. The transport of molecules to the surface occurs due to a combination of diffusion and convective transport. According to the Langmuir or Avrami kinetic model the rate of deposition onto the surface is proportional to the free space of the surface. :\mathbf = \frac. Where θ is the proportional amount of area deposited and k is the rate constant. Although this model is robust it is only used for approximations because it fails to take into account intermediate processes. Dual polarisation interferometry being a real time technique with ~10 Hz resolution can measure the kinetics of monolayer self-assembly directly. Once the molecules are at the surface the self-organization occurs in three phases: :1. A low-density phase with random dispersion of molecules on the surface. :2. An intermediate-density phase with conformational disordered molecules or molecules lying flat on the surface. :3. A high-density phase with close-packed order and molecules standing normal to the substrate's surface. The phase transitions in which a SAM forms depends on the temperature of the environment relative to the triple point temperature, the temperature in which the tip of the low-density phase intersects with the intermediate-phase region. At temperatures below the triple point the growth goes from phase 1 to phase 2 where many islands form with the final SAM structure, but are surrounded by random molecules. Similar to nucleation in metals, as these islands grow larger they intersect forming boundaries until they end up in phase 3, as seen below. At temperatures above the triple point the growth is more complex and can take two paths. In the first path the heads of the SAM organize to their near final locations with the tail groups loosely formed on top. Then as they transit to phase 3, the tail groups become ordered and straighten out. In the second path the molecules start in a lying down position along the surface. These then form into islands of ordered SAMs, where they grow into phase 3, as seen below. The nature in which the tail groups organize themselves into a straight ordered monolayer is dependent on the inter-molecular attraction, or
van der Waals forces In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
, between the tail groups. To minimize the free energy of the organic layer the molecules adopt conformations that allow high degree of
Van der Waals forces In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
with some hydrogen bonding. The small size of the SAM molecules are important here because Van der Waals forces arise from the dipoles of molecules and are thus much weaker than the surrounding surface forces at larger scales. The assembly process begins with a small group of molecules, usually two, getting close enough that the
Van der Waals forces In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
overcome the surrounding force. The forces between the molecules orient them so they are in their straight, optimal, configuration. Then as other molecules come close by they interact with these already organized molecules in the same fashion and become a part of the conformed group. When this occurs across a large area the molecules support each other into forming their SAM shape seen in Figure 1. The orientation of the molecules can be described with two parameters: α and β. α is the angle of tilt of the backbone from the surface normal. In typical applications α varies from 0 to 60 degrees depending on the substrate and type of SAM molecule. β is the angle of rotation along the long axis of tee molecule. β is usually between 30 and 40 degrees. In some cases existence of kinetic traps hindering the final ordered orientation has been pointed out. Thus in case of dithiols formation of a "lying down" phase was considered an impediment to formation of "standing up" phase, however various recent studies indicate this is not the case. Many of the SAM properties, such as thickness, are determined in the first few minutes. However, it may take hours for defects to be eliminated via annealing and for final SAM properties to be determined. The exact kinetics of SAM formation depends on the adsorbate, solvent and substrate properties. In general, however, the kinetics are dependent on both preparations conditions and material properties of the solvent, adsorbate and substrate. Specifically, kinetics for adsorption from a liquid solution are dependent on: * Temperature – room-temperature preparation improves kinetics and reduces defects. * Concentration of adsorbate in the solution – low concentrations require longer immersion times and often create highly crystalline domains. * Purity of the adsorbate – impurities can affect the final physical properties of the SAM * Dirt or contamination on the substrate – imperfections can cause defects in the SAM The final structure of the SAM is also dependent on the chain length and the structure of both the adsorbate and the substrate. Steric hindrance and metal substrate properties, for example, can affect the packing density of the film, while chain length affects SAM thickness. Longer chain length also increases the thermodynamic stability.


Patterning


1. Locally attract

This first strategy involves locally depositing
self-assembled monolayers Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact ...
on the surface only where the
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
will later be located. This strategy is advantageous because it involves high throughput methods that generally involve fewer steps than the other two strategies. The major techniques that use this strategy are: * Micro-contact printing :Micro-contact printing or
soft lithography In technology, soft lithography is a family of techniques for fabricating or replicating structures using "elastomeric stamps, molds, and conformable photomasks". It is called "soft" because it uses elastomeric materials, most notably PDMS. S ...
is analogous to printing ink with a rubber stamp. The SAM molecules are inked onto a pre-shaped elastomeric stamp with a solvent and transferred to the substrate surface by stamping. The SAM solution is applied to the entire stamp but only areas that make contact with the surface allow transfer of the SAMs. The transfer of the SAMs is a complex diffusion process that depends on the type of molecule, concentration, duration of contact, and pressure applied. Typical stamps use PDMS because its elastomeric properties, E = 1.8 MPa, allow it to fit the countour of micro surfaces and its low surface energy, γ = 21.6 dyn/cm². This is a parallel process and can thus place nanoscale objects over a large area in a short time. * Dip-pen nanolithography : Dip-pen nanolithography is a process that uses an
atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
to transfer molecules on the tip to a substrate. Initially the tip is dipped into a reservoir with an ink. The ink on the tip evaporates and leaves the desired molecules attached to the tip. When the tip is brought into contact with the surface a water meniscus forms between the tip and the surface resulting in the diffusion of molecules from the tip to the surface. These tips can have radii in the tens of nanometers, and thus SAM molecules can be very precisely deposited onto a specific location of the surface. This process was discovered by
Chad Mirkin Chad Alexander Mirkin (born November 23, 1963) is an American chemist. He is the George B. Rathmann professor of chemistry, professor of medicine, professor of materials science and engineering, professor of biomedical engineering, and profess ...
and co-workers at
Northwestern University Northwestern University is a private research university in Evanston, Illinois. Founded in 1851, Northwestern is the oldest chartered university in Illinois and is ranked among the most prestigious academic institutions in the world. Charte ...
.


2. Locally remove

The locally remove strategy begins with covering the entire surface with a SAM. Then individual SAM molecules are removed from locations where the deposition of
nanostructures A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of di ...
is not desired. The result is the same as in the locally attract strategy, the difference being in the way this is achieved. The major techniques that use this strategy are: *
Scanning tunneling microscope A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986 ...
:The
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986 ...
can remove SAM molecules in many different ways. The first is to remove them mechanically by dragging the tip across the substrate surface. This is not the most desired technique as these tips are expensive and dragging them causes a lot of wear and reduction of the tip quality. The second way is to degrade or desorb the SAM molecules by shooting them with an electron beam. The
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986 ...
can also remove SAMs by field desorption and field enhanced surface diffusion. *
Atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
:The most common use of this technique is to remove the SAM molecules in a process called shaving, where the
atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
tip is dragged along the surface mechanically removing the molecules. An
atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
can also remove SAM molecules by
local oxidation nanolithography Local oxidation nanolithography (LON) is a tip-based nanofabrication method. It is based on the spatial confinement on an oxidation reaction under the sharp tip of an atomic force microscope. The first materials on which LON was demonstrated wer ...
. *
Ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
irradiation :In this process, UV light is projected onto the surface with a SAM through a pattern of apperatures in a chromium film. This leads to photo oxidation of the SAM molecules. These can then be washed away in a polar solvent. This process has 100 nm resolutions and requires exposure time of 15–20 minutes.


3. Modify tail groups

The final strategy focuses not on the deposition or removal of SAMS, but the modification of terminal groups. In the first case the terminal group can be modified to remove functionality so that SAM molecule will be inert. In the same regards the terminal group can be modified to add functionality so it can accept different materials or have different properties than the original SAM terminal group. The major techniques that use this strategy are: * Focused electron beam and
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
irradiation :Exposure to electron beams and UV light changes the terminal group chemistry. Some of the changes that can occur include the cleavage of bonds, the forming of double carbon bonds, cross-linking of adjacent molecules, fragmentation of molecules, and confromational disorder. *
Atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
:A conductive AFM tip can create an electrochemical reaction that can change the terminal group.


Applications


Thin-film SAMs

SAMs are an inexpensive and versatile surface coating for applications including control of wetting and adhesion, chemical resistance, bio compatibility, sensitization, and molecular recognition for sensors and nano fabrication. Areas of application for SAMs include biology, electrochemistry and electronics, nanoelectromechanical systems (NEMS) and
microelectromechanical systems Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems (or microelectronic and microelectromechanical systems) and the related micromechatronics and microsystems constitute the technology of microscopic devices, ...
(MEMS), and everyday household goods. SAMs can serve as models for studying membrane properties of cells and organelles and cell attachment on surfaces. SAMs can also be used to modify the surface properties of electrodes for electrochemistry, general electronics, and various NEMS and MEMS. For example, the properties of SAMs can be used to control electron transfer in electrochemistry. They can serve to protect metals from harsh chemicals and etchants. SAMs can also reduce sticking of NEMS and MEMS components in humid environments. In the same way, SAMs can alter the properties of glass. A common household product, Rain-X, utilizes SAMs to create a hydrophobic monolayer on car windshields to keep them clear of rain. Another application is an anti-adhesion coating on
nanoimprint lithography Nanoimprint lithography (NIL) is a method of fabricating nanometer scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subse ...
(NIL) tools and stamps. One can also coat
injection molding Injection moulding (U.S. spelling: injection molding) is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals (for ...
tools for polymer replication with a Perfluordecyltrichlorosilane SAM. Thin film SAMs can also be placed on
nanostructures A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of di ...
. In this way they functionalize the
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
. This is advantageous because the
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
can now selectively attach itself to other molecules or SAMs. This technique is useful in
biosensors A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
or other MEMS devices that need to separate one type of molecule from its environment. One example is the use of magnetic
nanoparticles A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
to remove a
fungus A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
from a blood stream. The
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
is coated with a SAM that binds to the fungus. As the contaminated blood is filtered through a MEMS device the magnetic nanoparticles are inserted into the blood where they bind to the fungus and are then magnetically driven out of the blood stream into a nearby laminar waste stream.


Patterned SAMs

SAMs are also useful in depositing
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
s, because each adsorbate molecule can be tailored to attract two different materials. Current techniques utilize the head to attract to a surface, like a plate of gold. The terminal group is then modified to attract a specific material like a particular
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
, wire, ribbon, or other
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
. In this way, wherever the SAM is patterned to a surface there will be
nanostructures A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of di ...
attached to the tail groups. One example is the use of two types of SAMs to align single wall
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
, SWNTs. Dip pen nanolithography was used to pattern a 16-mercaptohexadecanoic acid (MHA)SAM and the rest of the surface was passivated with 1-octadecanethiol (ODT) SAM. The polar solvent that is carrying the SWNTs is attracted to the
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are n ...
MHA; as the solvent evaporates, the SWNTs are close enough to the MHA SAM to attach to it due to
Van der Waals forces In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
. The nanotubes thus line up with the MHA-ODT boundary. Using this technique
Chad Mirkin Chad Alexander Mirkin (born November 23, 1963) is an American chemist. He is the George B. Rathmann professor of chemistry, professor of medicine, professor of materials science and engineering, professor of biomedical engineering, and profess ...
, Schatz and their co-workers were able to make complex two-dimensional shapes, a representation of a shape created is shown to the right. Another application of patterned SAMs is the functionalization of
biosensors A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
. The tail groups can be modified so they have an affinity for
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
,
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, or
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
. The SAM can then be placed onto a
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
so that binding of these molecules can be detected. The ability to pattern these SAMs allows them to be placed in configurations that increase sensitivity and do not damage or interfere with other components of the
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
.


Metal organic superlattices

There has been considerable interest in use of SAMs for new materials e.g. via formation of two- or three-dimensional metal organic superlattices by assembly of SAM capped nanoparticles or layer by layer SAM-nanoparticle arrays using dithiols.


References


Further reading

* * I. Rubinstein, E. Sabatani, R. Maoz and J. Sagiv, Organized Monolayers on Gold Electrodes, in ''Electrochemical Sensors for Biomedical Applications'', C.K.N. Li (Ed.), The Electrochemical Society 1986: 175. * * * {{cite journal , last1 = Hoster , first1 = H.E. , last2 = Roos , first2 = M. , last3 = Breitruck , first3 = A. , last4 = Meier , first4 = C. , last5 = Tonigold , first5 = K. , last6 = Waldmann , first6 = T. , last7 = Ziener , first7 = U. , last8 = Landfester , first8 = K. , author-link8=Katharina Landfester , last9 = Behm , first9 = R.J. , year = 2007 , title = Structure Formation in Bis(terpyridine)Derivative Adlayers – Molecule-Substrate vs. Molecule-Molecule Interactions , journal = Langmuir , volume = 23 , issue = 23, pages = 11570–11579 , doi=10.1021/la701382n, pmid = 17914848
Sigma-Aldrich "Material Matters", Molecular Self-Assembly
Nanotechnology Thin films Supramolecular chemistry Self-organization