Selective glucocorticoid receptor agonists
   HOME

TheInfoList



OR:

Selective glucocorticoid receptor modulators (SEGRMs) and selective glucocorticoid receptor agonists (SEGRAs) formerly known as dissociated glucocorticoid receptor agonists (DIGRAs) are a class of experimental drugs designed to share many of the desirable
anti-inflammatory Anti-inflammatory is the property of a substance or treatment that reduces inflammation or swelling. Anti-inflammatory drugs, also called anti-inflammatories, make up about half of analgesics. These drugs remedy pain by reducing inflammation as o ...
,
immunosuppressive Immunosuppression is a reduction of the activation or efficacy of the immune system. Some portions of the immune system itself have immunosuppressive effects on other parts of the immune system, and immunosuppression may occur as an adverse reacti ...
, or
anticancer An anticarcinogen (also known as a carcinopreventive agent) is a substance that counteracts the effects of a carcinogen or inhibits the development of cancer. Anticarcinogens are different from anticarcinoma agents (also known as anticancer or an ...
properties of classical
glucocorticoid Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every verteb ...
drugs but with fewer side effects such as skin atrophy. Although preclinical evidence on SEGRAMs’ anti-inflammatory effects are culminating, currently, the efficacy of these SEGRAMs on cancer are largely unknown. Selective glucocorticoid receptor agonists (SEGRAs) are historically and typically steroidal in structure while selective glucocorticoid receptor modulators (SEGRMs) are typically
nonsteroidal A nonsteroidal compound is a drug that is not a steroid nor a steroid derivative. Nonsteroidal anti-inflammatory drugs (NSAIDs) are distinguished from corticosteroids as a class of anti-inflammatory agents. List of nonsteroidal steroid receptor mo ...
. The combined abbreviation of selective glucocorticoid receptor agonist and modulator is SEGRAM. A number of such ligands have been developed and are being evaluated in preclinical and clinical testing. SEGRAMs achieve their selectivity by triggering only a subset the
glucocorticoid receptor The glucocorticoid receptor (GR, or GCR) also known as NR3C1 (nuclear receptor subfamily 3, group C, member 1) is the receptor to which cortisol and other glucocorticoids bind. The GR is expressed in almost every cell in the body and regulates ...
mechanisms of action.


History

Synthetic steroids with SEGRA-like properties were already discovered in the late 1990s. During the 2000s, many potential SEGRAMs were synthesized, most of them having nonsteroidal structures. In ''in vitro studies in cellular models'' these SEGRAM molecules bind to the
glucocorticoid receptor The glucocorticoid receptor (GR, or GCR) also known as NR3C1 (nuclear receptor subfamily 3, group C, member 1) is the receptor to which cortisol and other glucocorticoids bind. The GR is expressed in almost every cell in the body and regulates ...
with an affinity similar to
dexamethasone Dexamethasone is a glucocorticoid medication used to treat rheumatic problems, a number of skin diseases, severe allergies, asthma, chronic obstructive lung disease, croup, brain swelling, eye pain following eye surgery, superior vena ...
, a potent glucocorticoid, and with an ability to repress the production of inflammatory mediators such as
interleukin 6 Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the ''IL6'' gene. In addition, osteoblasts secrete IL-6 to stimulate osteoclast formation. Smooth ...
and prostaglandin E2. Moreover, ''in vitro'' a particular SEGRAM can promote apoptosis in prostate cancer and
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
. In vivo studies in mice and rats showed that a topically administered SEGRAM inhibited
peroxidase Peroxidases or peroxide reductases ( EC numberbr>1.11.1.x are a large group of enzymes which play a role in various biological processes. They are named after the fact that they commonly break up peroxides. Functionality Peroxidases typically ca ...
activity and formation of
oedema Edema, also spelled oedema, and also known as fluid retention, dropsy, hydropsy and swelling, is the build-up of fluid in the body's tissue. Most commonly, the legs or arms are affected. Symptoms may include skin which feels tight, the area ma ...
, both indicators of anti-inflammatory activity, comparably to
prednisolone Prednisolone is a steroid medication used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthr ...
. Systemic administration in mice or rats indicate that SEGRAMs can diminish acute
infections An infection is the invasion of tissues by pathogens, their multiplication, and the reaction of host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmissible disease or communicable di ...
,
rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are invol ...
, asthma and colitis. ''In vivo'' evidence on whether particular SEGRAMs can elicit similar effects than classic glucocorticoid in cancer pathologies is currently lacking. Current preclinical tests show that the SEGRAMs available so far would elicit fewer side effect or at least less grave side effects than classic glucocorticoids would. For example, skin atrophy in rats was significantly less pronounced than under prednisolone in a study using the SEGRAM Mapracorat, and metabolic effects like weight gain or increase of blood glucose were practically inexistent.


Mechanism of action

Both non-selective glucocorticoids and selective glucocorticoid receptor agonists work by binding to and activating the
glucocorticoid receptor The glucocorticoid receptor (GR, or GCR) also known as NR3C1 (nuclear receptor subfamily 3, group C, member 1) is the receptor to which cortisol and other glucocorticoids bind. The GR is expressed in almost every cell in the body and regulates ...
(GR). In contrast to glucocorticoids, which activate the GR to work through (at least) two signal transduction pathways, SEGRAMs activate the GR in such a way that it only operates through one of the two main possible pathways. In the absence of glucocorticoids, the GR resides in the cytosol in an inactive state complexed with heat shock proteins (HSPs) and immunophilins. Binding of glucocorticoids to the GR activates the receptor by causing a conformational change in the GR and thus a dissociation of the bound HSPs. The activated GR can then regulate gene expression via one of two pathways: ;Transactivation: The first (direct) pathway is called transactivation whereby the activated GR protein dimer, dimerizes, is protein targeting, translocated into the cell nucleus, nucleus and binds to specific sequences of DNA called hormone response element, glucocorticoid response elements (GREs). The GR/DNA complex recruits other proteins which transcribe downstream DNA into messenger RNA, mRNA and eventually protein. Examples of glucocorticoid-responsive genes include those that encode annexin A1, TSC22D3 (also known as GILZ), angiotensin-converting enzyme, neutral endopeptidase and other anti-inflammatory proteins. ;Transrepression: The second (indirect) pathway is called transrepression, in which activated monomeric GR binds to other transcription factors such as NF-κB and AP-1 (transcription factor), AP-1 and prevents these from up-regulating the expression of their target genes. These target genes encode proteins such as cyclooxygenase, Nitric oxide synthase, NO synthase, phospholipase A2, tumor necrosis factor, transforming growth factor beta, ICAM-1, and a number of other pro-inflammatory proteins. Hence the anti-inflammatory effects of glucocorticoids results from both transactivation and transrepression. In contrast, studies in rats and mice have shown that most of the side effects of glucocorticoids, such as diabetogenic activity, osteoporosis, as well as skin atrophy, are mainly caused by transactivation. A selective glucocorticoid that is able to transrepress without transactivation should preserve many of the desirable therapeutic anti-inflammatory effects and minimize these particular undesired side effects. Initial evidence that transpression alone can be sufficient for an anti-inflammatory response was provided by introducing a point mutation in the GR of mice that prevented GR from dimerizing and binding to DNA and thereby blocking transactivation. At the same time, this mutation did not interfere with transrepression. While GR is essential for survival, these mice are still viable. However, when these mice were treated with the synthetic glucocorticoid dexamethasone, there was no elevation of glucose. These dexamethasone-treated mice were resistant to an inflammatory stimulus. Hence, these mice were responsive to the anti-inflammatory effects of dexamethasone but were resistant to at least some of the side effects. Just like glucocorticoids, SEGRAMs bind to and activate GR. However, in contrast to glucocorticoids, SEGRAMs selectively activate the GR in such a way that they yield an improved therapeutic benefit. Generally, for specific inflammation-based diseases, SEGRAMs should more strongly transrepress than transactivate, or better yet solely transrepress and fail to transactivate. This type of selective GR activation should result in fewer side effects than the expected side effects that appear with a chronic treatment with classic glucocorticoids.


Clinical trials

Phase II clinical trials with one of the candidate compounds, mapracorat (code names BOL-303242-X and ZK 245186), started in summer 2009. One was a double blind dose finding study for an ointment against atopic dermatitis conducted by Intendis, a part of Bayer HealthCare Pharmaceuticals specialized on dermatology. A Phase III trial started in November 2010, evaluating an Ophthalmology, ophthalmic Suspension (chemistry), suspension for the treatment of inflammation following cataract surgery, conducted by Bausch & Lomb. A phase II trial with another dissociated glucocorticoid fosdagrocorat (PF-04171327) (a phosphate ester prodrug of dagrocorat (PF-00251802)) for rheumatoid arthritis was started in 2011 by Pfizer. The results of these clinical trials have not yet been disclosed and no SEGRAM has as yet been approved for clinical use.


Potential applications

In chronic inflammatory diseases like atopic dermatitis (skin), rheumatoid arthritis (joints),..., the side effects of corticosteroids are problematic because of the necessary long-term treatment. Therefore, SEGRAMs are being investigated as an alternative topical treatment. Systemic long-term treatment of inflammations with corticosteroids is particularly liable to cause metabolic side-effects, which makes the development of oral SEGRAMs an interesting goal. It remains to be seen whether selective receptor agonists or modulators indeed cause significantly less side-effects than classical corticoids in clinical applications.


Beneficial atrophic effects

Of note, the atrophic effects of glucocorticoids are not always a disadvantage. The treatment of hyperproliferative diseases like psoriasis makes use of this property. SEGRAMs would likely be less effective in such conditions. Recent advances have shown that the former striving towards a total separation of GR transrepression and transactivation by using SEGRAMs deserves to be nuanced as the anti-inflammatory genes stimulated by GR transactivation, such as TSC22D3, GILZ and DUSP1, do seem to play an important role. Nevertheless, the more selective nature of these SEGRAMs would still reduce the number of GR-mediated side effects, and deserves further clinical testing.


Chemistry

Early SEGRAs were synthetic steroids. An example is RU 24858, one of the first compounds of this type to be published. Many newer SEGRAs have a different framework, although the similarity to steroids can still be seen in molecules like the benzopyranoquinoline A 276575 or in octahydrophenanthrene-2,7-diol derivatives. All of these compounds have been shown to exhibit SEGRA properties in cellular or in animal models. Mapracorat is one of a number of trifluoropropanolamines and -amides which are less obviously steroid-like in structure. Other typical examples of this group are ZK 216348 and 55D1E1. The bulky, bicyclic aromatic substituents (R1 and R2) account for the structural similarity to corticoids. The Cahn–Ingold–Prelog priority rules, ''R'' conformation of the asymmetric carbon atom seems to be essential for GR affinity.


List of SEGRMs

* Dagrocorat (PF-00251802, PF-251802) * Fosdagrocorat (PF-04171327, PF-4171327) * Mapracorat (BOL-303242-X, ZK-245186)


See also

* Selective receptor modulator * Selective androgen receptor modulator * Selective estrogen receptor modulator * Selective progesterone receptor modulator


References

{{good article Anti-inflammatory agents Immunosuppressants Selective glucocorticoid receptor modulators