Selected ion flow tube mass spectrometry
   HOME

TheInfoList



OR:

Selected-ion flow-tube mass spectrometry (SIFT-MS) is a quantitative
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
technique for trace gas analysis which involves the
chemical ionization Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. This was first introduced by Burnaby Munson and Frank H. Field in 1966. This technique is a branch of gaseous ion-molecule chemistry. Reagent gas molecules (ofte ...
of trace volatile compounds by selected positive precursor ions during a well-defined time period along a flow tube. Absolute concentrations of trace compounds present in air, breath or the headspace of bottled liquid samples can be calculated in real time from the ratio of the precursor and product ion signal ratios, without the need for sample preparation or
calibration In measurement technology and metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of kno ...
with standard mixtures. The
detection limit The limit of detection (LOD or LoD) is the lowest signal, or the lowest corresponding quantity to be determined (or extracted) from the signal, that can be observed with a sufficient degree of confidence or statistical significance. However, the ...
of commercially available SIFT-MS instruments extends to the single digit pptv range. The instrument is an extension of the selected ion flow tube, SIFT, technique, which was first described in 1976 by Adams and Smith. It is a fast flow tube/ion swarm method to react positive or negative ions with atoms and molecules under truly thermalised conditions over a wide range of temperatures. It has been used extensively to study ion-molecule
reaction kinetics Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with chemical thermodynamics, which deals with the direction in w ...
. Its application to
ionospheric The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
and interstellar ion chemistry over a 20-year period has been crucial to the advancement and understanding of these topics. SIFT-MS was initially developed for use in human breath analysis, and has shown great promise as a non-invasive tool for physiological monitoring and disease
diagnosis Diagnosis is the identification of the nature and cause of a certain phenomenon. Diagnosis is used in many different disciplines, with variations in the use of logic, analytics, and experience, to determine "cause and effect". In systems engin ...
. It has since shown potential for use across a wide variety of fields, particularly in the
life sciences This list of life sciences comprises the branches of science that involve the scientific study of life – such as microorganisms, plants, and animals including human beings. This science is one of the two major branches of natural science, th ...
, such as
agriculture Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people ...
and
animal husbandry Animal husbandry is the branch of agriculture concerned with animals that are raised for meat, fibre, milk, or other products. It includes day-to-day care, selective breeding, and the raising of livestock. Husbandry has a long history, starti ...
,
environmental research Environmental science is an interdisciplinary academic field that integrates physics, biology, and geography (including ecology, chemistry, plant science, zoology, mineralogy, oceanography, limnology, soil science, geology and physical geogra ...
and
food technology Food technology is a branch of food science that deals with the production, preservation, quality control and research and development of the food products. Early scientific research into food technology concentrated on food preservation. ...
. SIFT-MS has been popularised as a technology which is sold and marketed by Syft Technologies based in Christchurch, New Zealand.


Instrumentation

In the selected ion flow tube mass spectrometer, SIFT-MS, ions are generated in a microwave plasma ion source, usually from a mixture of laboratory air and water vapor. From the formed plasma, a single ionic species is selected using a
quadrupole A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure refl ...
mass filter to act as "precursor ions" (also frequently referred to as primary or reagent ions in SIFT-MS and other processes involving chemical ionization). In SIFT-MS analyses, H3O+, NO+ and O2+ are used as precursor ions, and these have been chosen because they are known not to react significantly with the major components of air (nitrogen, oxygen, etc.), but can react with many of the very low level (trace) gases. The selected precursor ions are injected into a flowing carrier gas (usually
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
at a pressure of 1 Torr) via a Venturi orifice (~1 mm diameter) where they travel along the reaction flow tube by
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
. Concurrently, the neutral analyte molecules of a sample vapor enter the flow tube, via a heated sampling tube, where they meet the precursor ions and may undergo chemical ionization, depending on their chemical properties, such as their
proton affinity The proton affinity (PA, ''E''pa) of an anion or of a neutral atom or molecule is the negative of the enthalpy change in the reaction between the chemical species concerned and a proton in the gas phase: ::: A- + H+ -> HA ::: B + H+ -> BH ...
or
ionization energy Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
. The newly formed "product ions" flow into the mass spectrometer chamber, which contains a second quadrupole mass filter, and an
electron multiplier An electron multiplier is a vacuum-tube structure that multiplies incident charges. In a process called secondary emission, a single electron can, when bombarded on secondary-emissive material, induce emission of roughly 1 to 3 electrons. If an ...
detector, which are used to separate the ions by their mass-to-charge ratios (''m/z'') and measure the count rates of the ions in the desired ''m/z'' range.


Analysis

The concentrations of individual compounds can be derived largely using the count rates of the precursor and product ions, and the reaction rate coefficients, k.
Exothermic In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity ...
proton transfer reactions with H3O+ are assumed to proceed at the collisional rate (see
Collision theory Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the reactant hit each other with correct orientation, only a certain amount of collisions result in a percept ...
), the coefficient for which, kc, is calculable using the method described by Su and Chesnavich, providing the
polarizability Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of all matter, considering that matter is made up of elementar ...
and dipole moment are known for the reactant molecule. NO+ and O2+ reactions proceed at kc less frequently, and thus the reaction rates of the reactant molecule with these precursor ions must often be derived experimentally by comparing the decline in the count rates of each of the NO+ and O2+ precursor ions to that of H3O+ as the sample flow of reactant molecules is increased."Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis" Smith D., Španěl P.; Mass Spectrometry Reviews 24 (2005) pp661– 700. The product ions and rate coefficients have been derived in this way for well over 200 volatile compounds, which can be found in the scientific literature."An index of the literature for bimolecular gas phase cation-molecule reaction kinetics" Anicich, V. G.; JPL-Publication-03-19 Pasadena, CA, USA http://hdl.handle.net/2014/7981 The instrument can be programmed either to scan across a range of masses to produce a mass spectrum (Full Scan, FS, mode), or to rapidly switch between only the ''m/z'' values of interest (Multiple Ion Monitoring, MIM, mode). Due to the different chemical properties of the aforementioned precursor ions (H3O+, NO+, and O2+), different FS mode spectra can be produced for a vapor sample, and these can give different information relating to the composition of the sample. Using this information, it is often possible to identify the trace compound(s) that are present. The MIM mode, on the other hand will usually employ a much longer dwell time on each ion, and as a result, accurate quantification is possible to the
parts per billion In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, th ...
(ppb) level. SIFT-MS utilises an extremely soft ionisation process which greatly simplifies the resulting spectra and thereby facilitates the analysis of complex mixtures of gases, such as human breath. Another very soft ionization technique is secondary electrospray ionization (SESI-MS). For example, even
proton-transfer-reaction mass spectrometry Proton-transfer-reaction mass spectrometry (PTR-MS) is an analytical chemistry technique that uses gas phase hydronium reagent ions which are produced in an ion source. PTR-MS is used for online monitoring of volatile organic compounds (VOCs) in a ...
(PTR-MS), another soft ionisation technology that uses the H3O+ reagent ion, has been shown to give considerably more product ion fragmentation than SIFT-MS. Another key feature of SIFT-MS is the upstream mass quadrupole, which allows the use of multiple precursor ions. The ability to use three precursor ions, H3O+, NO+ and O2+, to obtain three different spectra is extremely valuable because it allows the operator to analyse a much wider variety of compounds. An example of this is methane, which cannot be analysed using H3O+ as a precursor ion (because it has a proton affinity of 543.5kJ/mol, somewhat less than that of H2O), but can be analysed using O2+. Furthermore, the parallel use of three precursor ions may allow the operator to distinguish between two or more compounds that react to produce ions of the same mass-to-charge ratio in certain spectra. For example, dimethyl sulfide (C2H6S, 62 amu) accepts a proton when it reacts with H3O+ to generate C2H7S+ product ions which appear at ''m/z'' 63 in the resulting spectrum. This may conflict with other product ions, such as the association product from the reaction with carbon dioxide, H3O+CO2, and the single hydrate of the protonated acetaldehyde ion, C2H5O+(H2O), which also appear at ''m/z'' 63, and so it may be unidentifiable in certain samples. However dimethyl sulfide reacts with NO+ by charge transfer, to produce the ion C2H6S+, which appears at ''m/z'' 62 in resulting spectra, whereas carbon dioxide does not react with NO+, and acetaldehyde donates a hydride ion, giving a single product ion at ''m/z'' 43, C2H3O+, and so dimethyl sulfide can be easily distinguished. Over recent years, advances in SIFT-MS technology have vastly increased the sensitivity of these devices such that the limits of detection now extend down to the single-digit-ppt level.B.J. Prince, D.B. Milligan, M.J. McEwan, Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring, Rapid Communications in Mass Spectrometry, 24, 1763-1769 (2010)


References

{{Reflist


Literature

* "The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions" Adams N.G., Smith D.; International Journal of Mass Spectrometry and Ion Physics 21 (1976) pp. 349–359. * "Parametrization of the ion-polar molecule collision rate constant by trajectory calculations" Su T., Chesnavich W.J.; Journal of Chemical Physics 76 (1982) pp. 5183–5186. * "Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis" Smith D., Španěl P.; Mass Spectrometry Reviews 24 (2005) pp. 661–700. * "Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry" Dryahina K., Smith D., Španěl P.; Rapid Communications in Mass Spectrometry 24 (2010) pp. 1296–1304. Mass spectrometry