Seasonal energy efficiency ratio
   HOME

TheInfoList



OR:

In the United States, the efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER) which is defined by the
Air Conditioning, Heating, and Refrigeration Institute The Air Conditioning, Heating, and Refrigeration Institute (AHRI), formed in 2008 by a merger of the Air-Conditioning and Refrigeration Institute (ARI) and the Gas Appliance Manufacturers Association (GAMA), is a North American trade association o ...
, a trade association, in its 2008 standard AHRI 210/240, ''Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment''. A similar standard is the European seasonal energy efficiency ratio (ESEER). The SEER rating of a unit is the cooling output during a typical cooling-season divided by the total electric energy input during the same period. The higher the unit's SEER rating the more energy efficient it is. In the U.S., the SEER is the ratio of cooling in
British thermal unit The British thermal unit (BTU or Btu) is a unit of heat; it is defined as the amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit. It is also part of the United States customary units. The modern SI ...
s (BTUs) to the energy consumed in watt-hours. The coefficient of performance ( COP), a more universal unit-less measure of efficiency, is discussed in the following section.


Example

For example, consider a 5000 BTU/h (1465-watt cooling capacity) air-conditioning unit, with a SEER of 10 BTU/(W·h), operating for a total of 1000 hours during an annual cooling season (e.g., 8 hours per day for 125 days). The annual total cooling output would be: :5000 BTU/h × 8 h/day × 125 days/year = 5,000,000 BTU/year With a SEER of 10 BTU/(W·h), the annual electrical energy usage would be about: :5,000,000 BTU/year ÷ 10 BTU/(W·h) = 500,000 W·h/year The average power usage may also be calculated more simply by: :Average power = (BTU/h) ÷ (SEER) = 5000 ÷ 10 = 500 W = 0.5 kW If your electricity cost is $0.20/(kW·h), then your cost per operating hour is: :0.5 kW × $0.20/(kW·h) = $0.10/h


Relationship of SEER to EER and COP

The energy efficiency ratio (EER) of a particular cooling device is the ratio of ''output'' cooling energy (in BTUs) to ''input'' electrical energy (in watt-hours) at a given operating point. EER is generally calculated using a outside temperature and an inside (actually return-air) temperature of and 50% relative humidity. The EER is related to the coefficient of performance ( COP) commonly used in
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws ...
, with the primary difference being that the COP of a cooling device is unit-less, because the numerator and denominator are expressed in the same units. The EER uses mixed units, so it doesn't have an immediate physical sense and is obtained by multiplying the COP (or EER) by the conversion factor from BTUs to watt-hours: EER = 3.41214 × COP (see
British thermal unit The British thermal unit (BTU or Btu) is a unit of heat; it is defined as the amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit. It is also part of the United States customary units. The modern SI ...
). The seasonal energy efficiency ratio (SEER) is also the COP (or EER) expressed in BTU/watt-hour, but instead of being evaluated at a single operating condition, it represents the expected overall performance for a typical year's weather in a given location. The SEER is thus calculated with the same indoor temperature, but over a range of outside temperatures from to , with a certain specified percentage of time in each of 8 bins spanning 5 °F (2.8 °C). There is no allowance for different climates in this rating, which is intended to give an indication of how the EER is affected by a range of outside temperatures over the course of a cooling season. Typical EER for residential central cooling units = 0.875 × SEER. SEER is a higher value than EER for the same equipment. A more detailed method for converting SEER to EER uses this formula: :EER = −0.02 × SEER² + 1.12 × SEER Note that this method is used for benchmark modeling only and is not appropriate for all climate conditions. A SEER of 13 is approximately equivalent to an EER of 11, and a COP of 3.2, which means that 3.2 units of heat are removed from indoors per unit of energy used to run the air conditioner.


Theoretical maximum

The SEER and EER of an air conditioner are limited by the
laws of thermodynamics The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various paramet ...
. The refrigeration process with the maximum possible efficiency is the
Carnot cycle A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodyna ...
. The COP of an air conditioner using the Carnot cycle is: :COP_=\frac where T_C is the indoor temperature and T_H is the outdoor temperature. Both temperatures must be measured using a thermodynamic temperature scale based at absolute zero such as
Kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
or
Rankine Rankine is a surname. Notable people with the surname include: * William Rankine (1820–1872), Scottish engineer and physicist ** Rankine body an elliptical shape of significance in fluid dynamics, named for Rankine ** Rankine scale, an absolute-t ...
. The EER is calculated by multiplying the COP by 3.412 BTU/W⋅h as described above: :EER_=3.412 \frac Assuming an outdoor temperature of and an indoor temperature of , the above equation gives (when temperatures are converted to the Kelvin or Rankine scales) a COP of 36, or an EER of 120. This is about 10 times more efficient than a typical home air conditioner available today. The maximum EER decreases as the difference between the inside and outside air temperature increases, and vice versa. In a desert climate where the outdoor temperature is , the maximum COP drops to 13, or an EER of 46 (for an indoor temperature of ). The maximum SEER can be calculated by averaging the maximum EER over the range of expected temperatures for the season.


US government SEER standards

SEER rating reflects overall system efficiency on a seasonal basis and EER reflects the system's energy efficiency at one specific operating condition. Both ratings are useful when choosing products, but the same rating must be used for comparisons. Substantial energy savings can be obtained from more efficient systems. For example, by upgrading from SEER 9 to SEER 13, the power consumption is reduced by 30% (equal to 1 − 9/13). With existing units that are still functional and well-maintained, when the
time value of money The time value of money is the widely accepted conjecture that there is greater benefit to receiving a sum of money now rather than an identical sum later. It may be seen as an implication of the later-developed concept of time preference. The ...
is considered, retaining existing units rather than proactively replacing them may be the most cost effective. However, the efficiency of air conditioners can degrade significantly over time. But when either replacing equipment, or specifying new installations, a variety of SEERs are available. For most applications, the minimum or near-minimum SEER units are most cost effective, but the longer the cooling seasons, the higher the electricity costs, and the longer the purchasers will own the systems, the more that incrementally higher SEER units are justified. Residential split-system AC units of SEER 20 or more are now available. The higher SEER units typically have larger coils and multiple compressors, with some also having variable refrigerant flow and variable supply air flow.


1992

In 1987 legislation taking effect in 1992 was passed requiring a minimum SEER rating of 10. It is rare to see systems rated below SEER 9 in the United States because aging, existing units are being replaced with new, higher efficiency units.


2006

Beginning in January 2006 a minimum SEER 13 was required. The United States requires that residential systems manufactured after 2005 have a minimum SEER rating of 13. ENERGY STAR qualified Central Air Conditioners must have a SEER of at least 14.5. Window units are exempt from this law so their SEERs are still around 10.


2015

In 2011 the US
Department of Energy A Ministry of Energy or Department of Energy is a government department in some countries that typically oversees the production of fuel and electricity; in the United States, however, it manages nuclear weapons development and conducts energy-re ...
(DOE) revised energy conservation rules to impose elevated minimum standards and regional standards for residential HVAC systems. The regional approach recognizes the differences in cost-optimization resulting from regional climate differences. For example, there is little cost benefit in having a very high SEER air conditioning unit in Maine, a state in the northeast US. Starting January 1, 2015, split-system central air conditioners installed in the Southeastern Region of the United States of America must be at least 14 SEER. The Southeastern Region includes Alabama, Arkansas, Delaware, Florida, Georgia, Hawaii, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia. Similarly, split-system central air conditioners installed in the Southwestern Region must be a minimum 14 SEER and 12.2 EER beginning on January 1, 2015. The Southwestern Region consists of Arizona, California, Nevada, and New Mexico. Split-system central air conditioners installed in all other states outside the Southeastern and Southwestern regions must continue to be a minimum of 13 SEER, which is the current national requirement. There have been many new advances in efficient technology over the past 10 years which have enabled manufacturers to increase their SEER ratings dramatically in order to stay above the required minimums set by the United States department of energy.


Calculating the annual cost of electric energy for an air conditioner

Electric power is usually measured in kilowatts (kW). Electric energy is usually measured in kilowatt-hours (kW·h). For example, if an electric load that draws 1.5 kW of electric power is operated for 8 hours, it uses 12 kW·h of electric energy. In the United States, a residential electric customer is charged based on the amount of electric energy used. On the customer bill, the electric utility states the amount of electric energy, in kilowatt-hours (kW·h), that the customer used since the last bill, and the cost of the energy per kilowatt-hour (kW·h). Air-conditioner sizes are often given as "tons" of cooling, where 1 ton of cooling equals . 1 ton of cooling equals the amount of power that needs to be applied continuously over a 24-hour period to melt 1 ton of ice. The annual cost of electric energy consumed by an air conditioner may be calculated as follows: : (Cost, $/year) = (unit size, BTU/h) × (hours per year, h) × (energy cost, $/kW·h) ÷ (SEER, BTU/W·h) ÷ (1000, W/kW) Example 1: An air-conditioning unit rated at (6 tons), with a SEER rating of 10, operates 1000 hours per year at an electric energy cost of $0.12 per kilowatt-hour (kW·h). What is the annual cost of the electric energy it uses? : (72,000 BTU/h) × (1000 h/year) × ($0.12/kW·h) ÷ (10 BTU/W·h) ÷ (1000 W/kW) = $860/year Example 2. A residence near Chicago has an air conditioner with a cooling capacity of 4 tons and an SEER rating of 10. The unit is operated 120 days each year for 8 hours per day (960 hours per year), and the electric energy cost is $0.10 per kilowatt-hour. What is its annual cost of operation in terms of electric energy? First, we convert tons of cooling to BTU/h: : (4 tons) × (12,000 (BTU/h)/ton) = 48,000 BTU/h. The annual cost of the electric energy is: : (48,000 BTU/h) × (960 h/year) × ($0.10/kW·h) ÷ (10 BTU/W·h) ÷ (1000 W/kW) = $460/year


Maximum SEER ratings

Today there are mini-split (ductless) air conditioner units available with SEER ratings up to 42. During the 2014 AHR Expo, Mitsubishi unveiled a new mini-split ductless AC unit with a SEER rating of 30.5.
GREE GREE (derived from an abbreviation of the " Six degrees of separation" concept) is a Japanese social networking service founded by Yoshikazu Tanaka and operated by GREE, Inc. GREE focuses primarily on mobile games and over ninety percent of it ...
also released a 30.5 SEER rating mini split in 2015 as well.
Carrier Carrier may refer to: Entertainment * ''Carrier'' (album), a 2013 album by The Dodos * ''Carrier'' (board game), a South Pacific World War II board game * ''Carrier'' (TV series), a ten-part documentary miniseries that aired on PBS in April 20 ...
launched a 42 SEER ductless air conditioner during 2018 Consumer electronic Show (CES), held in Las Vegas. Traditional AC systems with ducts have maximum SEER ratings slightly below these levels. Also, practically, central systems will have an achieved energy efficiency ratio 10–20% lower than the nameplate rating due to the duct-related losses. Additionally, there are ground-source residential AC units with SEER ratings up to 75. However, ground-source heat pump effective efficiency is reliant on the temperature of the ground or water source used. Hot climates have a much higher ground or surface water temperature than cold climates and therefore will not be able to achieve such efficiencies. Moreover, the ARI rating scheme for ground-source heat pumps allows them to largely ignore required pump power in their ratings, making the achievable SEER values often practically lower than the highest efficiency air-source equipment—particularly for air cooling. There are a variety of technologies that will allow SEER and EER ratings to increase further in the near future. Some of these technologies include rotary compressors, inverters, DC brushless motors, variable-speed drives, and integrated systems such as those found in
solar-powered air conditioning Solar air conditioning, or "solar-powered air conditioning", refers to any air conditioning (cooling) system that uses solar power. This can be done through passive solar design, solar thermal energy conversion, and photovoltaic conversion (sunli ...
.


Heat pumps

A refrigeration cycle can be operated as a heat pump to move heat from outdoors into a warmer house. A heat pump with a higher SEER rating for cooling mode would also usually be more efficient in heating mode, rated using
HSPF Heating seasonal performance factor (HSPF) is a term used in the heating and cooling industry. HSPF is specifically used to measure the efficiency of air source heat pumps. HSPF is defined as the ratio of heat output (measured in BTUs) over the ...
. When operated in heating mode, a heat pump is typically more efficient than an electrical resistance heater. This is because a space heater can convert only the input electrical energy directly to output heat energy, while a heat pump also transfers heat from outdoors. In heating mode, the coefficient of performance is the ratio of heat provided to the energy used by the unit. An ideal resistance heater converting 100% of its input electricity to output heat would have COP = 1, equivalent to a 3.4 EER. The heat pump becomes less efficient as the outside temperature decreases, and its performance may become comparable to a resistance heater. For a heat pump with the minimum 13 SEER cooling efficiency, this is typically below .Goodman GSH13 Product Specifications Lower temperatures may cause a heat pump to operate below the efficiency of a resistance heater, so conventional heat pumps often include heater coils or auxiliary heating from LP or natural gas to prevent low efficiency operation of the refrigeration cycle. "Cold climate" heat pumps are designed to optimize efficiency below . In the case of cold climates, water or ground-source heat pumps are the most efficient solution. They use the relatively constant temperature of ground water or of water in a large buried loop to moderate the temperature differences in summer and winter and improve performance year round. The heat pump cycle is reversed in the summer to act as an air conditioner.


See also

*
Air conditioner Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
*
Air conditioning Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
*
Annual fuel use efficiency The annual fuel utilization efficiency (AFUE; pronounced 'A'-'Few' or 'A'-'F'-'U'-'E') is a thermal efficiency measure of space-heating furnaces and boilers. The AFUE differs from the true 'thermal efficiency' in that it is not a steady-state, pea ...
(AFUE) *
Coefficient of performance The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. Higher COPs equate to higher efficiency, lower energy ( ...
*
Energy star Energy Star (trademarked ''ENERGY STAR'') is a program run by the U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) that promotes energy efficiency. The program provides information on the energy consumption of pr ...
*
Heat pump A heat pump is a device that can heat a building (or part of a building) by transferring thermal energy from the outside using a refrigeration cycle. Many heat pumps can also operate in the opposite direction, cooling the building by removing ...
*
HSPF Heating seasonal performance factor (HSPF) is a term used in the heating and cooling industry. HSPF is specifically used to measure the efficiency of air source heat pumps. HSPF is defined as the ratio of heat output (measured in BTUs) over the ...
*
HVAC Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. ...
*
Thermal efficiency In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For a ...


References


External links


A new measure for the energy efficiency of heating and cooling devices
– Information from Daikin on seasonal efficiency
Climate Impacts on Heating Seasonal Performance Factor (HSPF) and Seasonal Energy Efficiency Ratio (SEER) for Air Source Heat Pumps

What is SEER Rating in HVAC
{{DEFAULTSORT:Seasonal Energy Efficiency Ratio Heating, ventilation, and air conditioning