Sea surface temperatures
   HOME

TheInfoList



OR:

Sea surface temperature (SST), or ocean surface temperature, is the ocean temperature close to the surface. The exact meaning of ''surface'' varies according to the measurement method used, but it is between and below the sea surface.
Air mass In meteorology, an air mass is a volume of air defined by its temperature and humidity. Air masses cover many hundreds or thousands of square miles, and adapt to the characteristics of the surface below them. They are classified according to l ...
es in the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing fo ...
are highly modified by sea surface temperatures within a short distance of the shore. Localized areas of heavy
snow Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout ...
can form in bands downwind of warm water bodies within an otherwise cold air mass. Warm sea surface temperatures are known to be a cause of
tropical cyclogenesis Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tr ...
over the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's oceans. Tropical cyclones can also cause a cool wake, due to turbulent mixing of the upper of the ocean. SST changes diurnally, like the air above it, but to a lesser degree. There is less SST variation on breezy days than on calm days. In addition,
ocean current An ocean current is a continuous, directed movement of sea water generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth contours ...
s such as the Atlantic Multidecadal Oscillation (AMO), can affect SST's on multi-decadal time scales, a major impact results from the global thermohaline circulation, which affects average SST significantly throughout most of the world's oceans. Coastal SSTs can cause offshore winds to generate
upwelling Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted surface water. The nut ...
, which can significantly cool or warm nearby landmasses, but shallower waters over a continental shelf are often warmer. Onshore winds can cause a considerable warm-up even in areas where upwelling is fairly constant, such as the northwest coast of
South America South America is a continent entirely in the Western Hemisphere and mostly in the Southern Hemisphere, with a relatively small portion in the Northern Hemisphere at the northern tip of the continent. It can also be described as the sout ...
. Its values are important within
numerical weather prediction Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in th ...
as the SST influences the atmosphere above, such as in the formation of sea breezes and sea fog. It is also used to calibrate measurements from
weather satellite A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or ...
s. It is very likely that global mean sea surface temperature increased by 0.88°C between 1850-1900 and 2011-2020 due to
global warming In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to E ...
, with most of that warming (0.60°C) occurring between 1980 and 2020.Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G.  Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021
Chapter 9: Ocean, Cryosphere and Sea Level Change
I
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
Land surface temperatures have increased faster than Ocean temperature, ocean temperatures as the ocean absorbs about 92% of excess heat generated by
climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
.


Definitions

Sea surface temperature (SST), or ocean surface temperature, is the water
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
close to the
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
's surface. The exact meaning of ''surface'' varies according to the measurement method used, but it is between and below the sea surface. The temperature further below that is called ''ocean temperature'' or ''deeper ocean temperature''. Ocean temperatures (more than 20 metres below the surface) also vary by region and time, and they contribute to variations in ocean heat content and ocean
stratification Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Data stratification in statistics Earth sciences * Stable and unstable stratification * Stratification, or st ...
. The increase of both ocean surface temperature and deeper ocean temperature is an important effect of climate change on oceans.


Variations and changes


Local variations

The SST has a diurnal range, just like the Earth's atmosphere above, though to a lesser degree due to its greater specific heat. On calm days, the temperature can vary by . The temperature of the ocean at depth lags the Earth's atmosphere temperature by 15 days per , which means for locations like the Aral Sea, temperatures near its bottom reach a maximum in December and a minimum in May and June. Near the coastline, some offshore and longshore winds move the warm waters near the surface offshore, and replace them with cooler water from below in the process known as Ekman transport. This pattern generally increases nutrients for marine life in the region, and can have a profound effect in some regions where the bottom waters are particularly nutrient-rich. Offshore of
river delta A river delta is a landform shaped like a triangle, created by deposition of sediment that is carried by a river and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or (more ra ...
s, freshwater flows over the top of the denser seawater, which allows it to heat faster due to limited vertical mixing. Remotely sensed SST can be used to detect the surface temperature signature due to
tropical cyclone A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depen ...
s. In general, an SST cooling is observed after the passing of a hurricane, primarily as the result of mixed layer deepening and surface heat losses. In the wake of several day long
Saharan dust Saharan dust is an aeolian mineral dust from the Sahara desert, the largest hot desert in the world. The desert spans just over 9 million square kilometers, from the Atlantic Ocean to the Red Sea, from the Mediterranean sea to the Niger River v ...
outbreaks across the adjacent northern Atlantic Ocean, sea surface temperatures are reduced 0.2 C to 0.4 C (0.3 to 0.7 F). Other sources of short-term SST fluctuation include extratropical cyclones, rapid influxes of
glacial A glacial period (alternatively glacial or glaciation) is an interval of time (thousands of years) within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate betwe ...
fresh water and concentrated phytoplankton blooms due to seasonal cycles or agricultural run-off. The tropical ocean has been warming faster than other regions since 1950, with the greatest rates of warming in the tropical Indian Ocean, western Pacific Ocean, and western boundary currents of the subtropical gyres. However, the eastern Pacific Ocean, subtropical North Atlantic Ocean, and Southern Ocean have warmed more slowly than the global average or have experienced cooling since the 1950s.


Atlantic Multidecadal Oscillation

The Atlantic Multidecadal Oscillation (AMO) is an important driver of North Atlantic SST and Northern Hemisphere climate, but the mechanisms controlling AMO variability remain poorly understood. Atmospheric internal variability, changes in ocean circulation, or anthropogenic drivers may control the multidecadal temperature variability associated with AMO. These changes in North Atlantic SST may influence winds in the subtropical North Pacific and produce warmer SSTs in the western Pacific Ocean.


Regional variations

El Niño is defined by prolonged differences in Pacific Ocean surface temperatures when compared with the average value. The accepted definition is a warming or cooling of at least 0.5 °C (0.9 °F) averaged over the east-central tropical Pacific Ocean. Typically, this anomaly happens at irregular intervals of 2–7 years and lasts nine months to two years. The average period length is 5 years. When this warming or cooling occurs for only seven to nine months, it is classified as El Niño/La Niña "conditions"; when it occurs for more than that period, it is classified as El Niño/La Niña "episodes". The sign of an El Niño in the sea surface temperature pattern is when warm water spreads from the west Pacific and the
Indian Ocean The Indian Ocean is the third-largest of the world's five oceanic divisions, covering or ~19.8% of the water on Earth's surface. It is bounded by Asia to the north, Africa to the west and Australia to the east. To the south it is bounded by t ...
to the east Pacific. It takes the rain with it, causing extensive drought in the western Pacific and rainfall in the normally dry eastern Pacific. El Niño's warm rush of nutrient-poor tropical water, heated by its eastward passage in the Equatorial Current, replaces the cold, nutrient-rich surface water of the Humboldt Current. When El Niño conditions last for many months, extensive ocean warming and the reduction in Easterly Trade winds limits upwelling of cold nutrient-rich deep water and its economic impact to local fishing for an international market can be serious. Among scientists, there is medium confidence that the tropical Pacific will transition to a mean pattern resembling that of El Niño on centennial time scale, but there is still high uncertainty in tropical Pacific SST projections because it is difficult to capture El Niño variability in climate models.


Recent increase due to climate change

Overall, scientists project that all regions of the oceans will warm by 2050, but models disagree for SST changes expected in the subpolar North Atlantic, the equatorial Pacific, and the Southern Ocean. The future global mean SST increase for the period 1995-2014 to 2081-2100 is 0.86°C under the most modest greenhouse gas emissions scenarios, and up to 2.89°C under the most severe emissions scenarios.


Measurement

There are a variety of techniques for measuring this parameter that can potentially yield different results because different things are actually being measured. Away from the immediate sea surface, general temperature measurements are accompanied by a reference to the specific depth of measurement. This is because of significant differences encountered between measurements made at different depths, especially during the daytime when low wind speed and high sunshine conditions may lead to the formation of a warm layer at the ocean's surface and strong vertical temperature gradients (a diurnal
thermocline A thermocline (also known as the thermal layer or the metalimnion in lakes) is a thin but distinct layer in a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) in which temperature changes more drastically with ...
). Sea surface temperature measurements are confined to the top portion of the ocean, known as the near-surface layer.


Thermometers

SST was one of the first oceanographic variables to be measured. Benjamin Franklin suspended a mercury thermometer from a ship while travelling between the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territori ...
and
Europe Europe is a large peninsula conventionally considered a continent in its own right because of its great physical size and the weight of its history and traditions. Europe is also considered a subcontinent of Eurasia and it is located entirel ...
in his survey of the Gulf Stream in the late eighteenth century. SST was later measured by dipping a
thermometer A thermometer is a device that measures temperature or a temperature gradient (the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermometer ...
into a bucket of water that was manually drawn from the sea surface. The first automated technique for determining SST was accomplished by measuring the temperature of water in the intake port of large ships, which was underway by 1963. These observations have a warm bias of around due to the heat of the engine room. Fixed
weather buoy Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, wh ...
s measure the water temperature at a depth of . Measurements of SST have had inconsistencies over the last 130 years due to the way they were taken. In the nineteenth century, measurements were taken in a bucket off of a ship. However, there was a slight variation in temperature because of the differences in buckets. Samples were collected in either a wood or an uninsulated canvas bucket, but the canvas bucket cooled quicker than the wood bucket. The sudden change in temperature between 1940 and 1941 was the result of an undocumented change in procedure. The samples were taken near the engine intake because it was too dangerous to use lights to take measurements over the side of the ship at night. Many different drifting buoys exist around the world that vary in design, and the location of reliable temperature sensors varies. These measurements are beamed to satellites for automated and immediate data distribution. A large network of coastal buoys in U.S. waters is maintained by the National Data Buoy Center (NDBC). Between 1985 and 1994, an extensive array of moored and drifting buoys was deployed across the equatorial Pacific Ocean designed to help monitor and predict the
El Niño El Niño (; ; ) is the warm phase of the El Niño–Southern Oscillation (ENSO) and is associated with a band of warm ocean water that develops in the central and east-central equatorial Pacific (approximately between the International Date ...
phenomenon.


Weather satellites

Weather satellites have been available to determine sea surface temperature information since 1967, with the first global composites created during 1970. Since 1982,
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioi ...
s have been increasingly utilized to measure SST and have allowed its spatial and temporal variation to be viewed more fully. Satellite measurements of SST are in reasonable agreement with
in situ ''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
temperature measurements. The satellite measurement is made by sensing the ocean radiation in two or more wavelengths within the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
part of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
or other parts of the spectrum which can then be empirically related to SST. These wavelengths are chosen because they are: # within the peak of the
blackbody radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spe ...
expected from the Earth, and # able to transmit adequately well through the atmosphere The satellite-measured SST provides both a synoptic view of the ocean and a high frequency of repeat views, allowing the examination of basin-wide upper
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
dynamics not possible with ships or buoys. NASA's
/span> (National Aeronautic and Space Administration) Moderate Resolution Imaging Spectroradiometer (MODIS)
/span> SST satellites have been providing global SST data since 2000, available with a one-day lag. NOAA's GOES (Geostationary Orbiting Earth Satellites)
/span> satellites are geo-stationary above the Western Hemisphere which enables to them to deliver SST data on an hourly basis with only a few hours of lag time. There are several difficulties with satellite-based absolute SST measurements. First, in infrared remote sensing methodology the radiation emanates from the top "skin" of the ocean, approximately the top 0.01 mm or less, which may not represent the
bulk temperature In thermofluids dynamics, the bulk temperature, or the average bulk temperature in the thermal fluid, is a convenient reference point for evaluating properties related to convective heat transfer, particularly in applications related to flow in pi ...
of the upper meter of ocean due primarily to effects of solar surface heating during the daytime, reflected radiation, as well as sensible heat loss and surface evaporation. All these factors make it somewhat difficult to compare satellite data to measurements from buoys or shipboard methods, complicating ground truth efforts. Secondly, the satellite cannot look through clouds, creating a cool bias in satellite-derived SSTs within cloudy areas. However, passive microwave techniques can accurately measure SST and penetrate cloud cover. Within atmospheric sounder channels on
weather satellite A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or ...
s, which peak just above the ocean's surface, knowledge of the sea surface temperature is important to their calibration.


Importance to the Earth's atmosphere

Sea surface temperature affects the behavior of the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing fo ...
above, so their initialization into
atmospheric model An atmospheric model is a mathematical model constructed around the full set of primitive dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, mois ...
s is important. While sea surface temperature is important for
tropical cyclogenesis Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tr ...
, it is also important in determining the formation of sea fog and sea breezes. Heat from underlying warmer waters can significantly modify an air mass over distances as short as to . For example, southwest of Northern Hemisphere extratropical cyclones, curved cyclonic flow bringing cold air across relatively warm water bodies can lead to narrow lake-effect snow (or sea effect) bands. Those bands bring strong localized
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
, often in the form of
snow Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout ...
, since large water bodies such as lakes efficiently store heat that results in significant temperature differences—larger than —between the water surface and the air above. Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height, the taller the clouds get, and the greater the precipitation rate becomes.


Tropical cyclones

Ocean temperature of at least 26.5 °C (79.7 °F) spanning through at minimum a 50-
metre The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its prefi ...
depth is one of the precursors needed to maintain a
tropical cyclone A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depen ...
(a type of
mesocyclone A mesocyclone is a meso-gamma mesoscale (or storm scale) region of rotation (vortex), typically around in diameter, most often noticed on radar within thunderstorms. In the northern hemisphere it is usually located in the right rear flank (back ...
). These warm waters are needed to maintain the warm core that fuels tropical systems. This value is well above 16.1 °C (60.9 °F), the long term global average surface temperature of the oceans. However, this requirement can be considered only a general baseline because it assumes that the ambient atmospheric environment surrounding an area of disturbed weather presents average conditions. Tropical cyclones have intensified when SSTs were slightly below this standard temperature. Tropical cyclones are known to form even when normal conditions are not met. For example, cooler air temperatures at a higher altitude (e.g., at the 500 
hPa HPA may refer to: Organizations * Harry Potter Alliance, a charity * Halifax Port Authority, Canada * Hamburg Port Authority, Germany * Hawaii Preparatory Academy, a school in Hawaii, US * Health Protection Agency, UK * Heerespersonalamt, the Ger ...
level, or 5.9 km) can lead to tropical cyclogenesis at lower water temperatures, as a certain lapse rate is required to force the atmosphere to be
unstable In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
enough for convection. In a moist atmosphere, this lapse rate is 6.5 °C/km, while in an atmosphere with less than 100% relative humidity, the required lapse rate is 9.8 °C/km. At the 500 hPa level, the air temperature averages −7 °C (18 °F) within the tropics, but air in the tropics is normally dry at this height, giving the air room to wet-bulb, or cool as it moistens, to a more favorable temperature that can then support convection. A wet-bulb temperature at 500 hPa in a tropical atmosphere of is required to initiate convection if the water temperature is , and this temperature requirement increases or decreases proportionally by 1 °C in the sea surface temperature for each 1 °C change at 500 hpa. Inside a cold cyclone, 500 hPa temperatures can fall as low as , which can initiate convection even in the driest atmospheres. This also explains why moisture in the mid-levels of the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
, roughly at the 500 hPa level, is normally a requirement for development. However, when dry air is found at the same height, temperatures at 500 hPa need to be even colder as dry atmospheres require a greater lapse rate for instability than moist atmospheres. At heights near the
tropopause The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere; which are two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer, that marks the end of ...
, the 30-year average temperature (as measured in the period encompassing 1961 through 1990) was −77 °C (−132 °F). A recent example of a
tropical cyclone A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depen ...
that maintained itself over cooler waters was Epsilon of the
2005 Atlantic hurricane season The 2005 Atlantic hurricane season was the most active Atlantic hurricane season in history, until the record was broken 15 years later in 2020. The season broke numerous records at the time, with 28 tropical or subtropical storms recorded. ...
.


See also

*
Global surface temperature In earth science, global surface temperature (GST; sometimes referred to as global mean surface temperature, GMST, or global average surface temperature) is calculated by averaging the temperature at the surface of the sea and air temperature ...
* The Blob (Pacific Ocean) *
Sea level rise Globally, sea levels are rising due to human-caused climate change. Between 1901 and 2018, the globally averaged sea level rose by , or 1–2 mm per year on average.IPCC, 2019Summary for Policymakers InIPCC Special Report on the Ocean and Cry ...
* Halocline refers to a salinity difference often altered by temperature-dependent factors * Loop Current, with plots of sea temperature in the
Gulf of Mexico The Gulf of Mexico ( es, Golfo de México) is an ocean basin and a marginal sea of the Atlantic Ocean, largely surrounded by the North American continent. It is bounded on the northeast, north and northwest by the Gulf Coast of the United ...
*
Pacific decadal oscillation The Pacific decadal oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. O ...
(PDO) * Salinity * Ghrsst-pp the Group for High Resolution SST * Satellite temperature measurements *
Instrumental temperature record The instrumental temperature record is a record of temperatures within Earth's climate based on direct, instrument-based measurements of air temperature and ocean temperature. Instrumental temperature records are distinguished from indirect rec ...


References


External links


Global map of current sea surface temperaturesGlobal map of current sea surface temperature anomalies

SQUAM
SST Quality Monitor (A near real-time Global QC Tool for monitoring time-series stability & cross-platform consistency of satellite SST)
iQuam
in situ SST Quality Monitor (A near real-time quality control & monitoring system for in situ SST measured by ships and buoys)
MICROS
Monitoring of IR Clear-sky Radiances over Oceans for SST {{DEFAULTSORT:Sea Surface Temperature Aquatic ecology Meteorological phenomena Marine meteorology Oceanography Thermodynamic cycles Articles containing video clips