Scanning acoustic microscope
   HOME

TheInfoList



OR:

A scanning acoustic microscope (SAM) is a device which uses focused sound to investigate, measure, or image an object (a process called scanning acoustic tomography). It is commonly used in failure analysis and non-destructive evaluation. It also has applications in biological and medical research. The semiconductor industry has found the SAM useful in detecting voids, cracks, and delaminations within microelectronic packages.


History

The first scanning acoustic microscope (SAM), with a 50 MHz ultrasonic lens, was developed in 1974 by R. A. Lemons and C. F. Quate at the Microwave Laboratory of Stanford University. In the late seventies and early eighties acoustic microscopes operating in several GHz range were common place and a transmission SAM operating up to 500MHz had also been made by R.Gr. Maev and his students at his Laboratory of Biophysical Introscopy of the
Russian Academy of Sciences The Russian Academy of Sciences (RAS; russian: Росси́йская акаде́мия нау́к (РАН) ''Rossíyskaya akadémiya naúk'') consists of the national academy of Russia; a network of scientific research institutes from across ...
. First commercial SAM ELSAM, with a broad frequency range from 100 MHz up to 1.8 GHz, was built at the Ernst Leitz GmbH by the group led by Martin Hoppe and his consultants
Abdullah Atalar Abdullah Atalar (born April 11, 1954) is a Turkish scientist and academic. Atalar was the Rector Rector (Latin for the member of a vessel's crew who steers) may refer to: Style or title *Rector (ecclesiastical), a cleric who functions as an a ...
( Stanford University), Roman Maev (
Russian Academy of Sciences The Russian Academy of Sciences (RAS; russian: Росси́йская акаде́мия нау́к (РАН) ''Rossíyskaya akadémiya naúk'') consists of the national academy of Russia; a network of scientific research institutes from across ...
) and Andrew Briggs (
Oxford University Oxford () is a city in England. It is the county town and only city of Oxfordshire. In 2020, its population was estimated at 151,584. It is north-west of London, south-east of Birmingham and north-east of Bristol. The city is home to th ...
.) Since then, many improvements to such systems have been made to enhance resolution and accuracy. Most of them were described in detail in the monograph Advanced in Acoustic Microscopy, Ed. by Andrew Briggs, 1992, Oxford University Press and in monograph by Roman Maev, Acoustic Microscopy Fundamentals and Applications, Monograph, Wiley & Son - VCH, 291 pages, August 2008, as well as recently in.R.Gr. Maev, Editor and Co-author, Advances in Acoustic Microscopy and High Resolution Ultrasonic Imaging: From Principles to New Applications, Monograph, 14 Chapters, 400 pages, Wiley & Son - VCH, April 2013


C-SAM versus other Techniques

There are lots of methods for failure analysis of damages in microelectronic packages, including but not limited to laser decapsulation, wet etch decapsulation,
optical microscopy Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
, SEM microscopy,
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
.There are many methods for failure analysis of damages in microelectronic packages. The problem with most of these methods is the fact that they are destructive. This means it’s possible that the damage itself will be gone during preparation. Also, most of these destructive methods need time-consuming and complicated sample preparation. So, in most cases, it is important to study damages with a non-destructive technique. And unlike other non-destructive techniques such as X-Ray, CSAM is highly sensitive to the elastic properties of the materials it travels through. For example, CSAM is highly sensitive to the presence of delaminations and air-gaps at sub-micron thicknesses, so it is particularly useful for inspection of small, complex devices.


Physic Principle

The technique makes use of the high penetration depth of acoustic waves to image the internal structure of the specimen. So, in scanning acoustic microscopy either reflected or transmitted acoustic waves are processed to analyze the internal features. When the acoustic wave propagates though the sample it may be scattered, absorbed or reflected at media interfaces. Thus, the technique registers the echo generated by the
acoustic impedance Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cu ...
(Z) contrast between two materials. Scanning acoustic microscopy works by directing focused sound from a transducer at a small point on a target object. Sound hitting the object is either scattered, absorbed, reflected (scattered at 180°) or transmitted (scattered at 0°). It is possible to detect the scattered pulses travelling in a particular direction. A detected pulse informs of the presence of a boundary or object. The `time of flight' of the pulse is defined as the time taken for it to be emitted by an acoustic source, scattered by an object and received by the detector, which is usually coincident with the source. The time of flight can be used to determine the distance of the inhomogeneity from the source given knowledge of the speed through the medium. Based on the measurement, a value is assigned to the location investigated. The transducer (or object) is moved slightly and then insonified again. This process is repeated in a systematic pattern until the entire region of interest has been investigated. Often the values for each point are assembled into an image of the object. The contrast seen in the image is based either on the object's geometry or material composition. The resolution of the image is limited either by the physical scanning resolution or the width of the sound beam (which in turn is determined by the frequency of the sound).


Methodology

Different types of analysis modes are available in high-definition SAM. The main three modes are A-scans, B-scans, and C-scans. Each one provides different information about the integrity of the sample’s structure. The A-scan is the amplitude of the echo signal over ToF. The transducer is mounted on the z-axis of the SAM. It can be focused to a specific target layer located in a hard-to-access area by changing the z-position with respect to the sample under testing that is mechanically fixed. The B-scan provides a vertical cross section of the sample with visualization of the depth information. It is a very good feature when it comes to damage detection in the cross section. The C-scan is a commonly used scanning mode, which gives 2D images (slices) of a target layer at a specific depth in the samples; multiple equidistant layers are feasible through the X-scan mode.


Pulse-reflection method

2D or 3D-dimensional images of the internal structure become available by means of the pulse-reflection method, in which the impedance mismatch between two materials leads to a reflection of the ultrasonic beam. Phase inversion of the reflected signal can allow for discrimination of the delamination (acoustic impedance almost zero) from inclusions and particles, but not from air bubbles, which show same impedance behavior as delamination. The higher the impedance mismatch at the interface, the higher the intensity of the reflected signal (more brightness in the 2D image), which is measured by the echo amplitude. In the case of an interface with air (Z = 0), total reflection of the ultrasonic wave occurs; therefore, SAM is highly sensitive to any entrapped air in the sample under testing. In order to enhance the insertion of the acoustic wave into the specimen both the acoustic transducer and the sample are immersed in a coupling media, typically water, to avoid the high reflection at air interfaces. In the pulse-wave mode, a lens having good focusing properties on an axis is used to focus the ultrasonic waves onto a spot on the specimen and to receive the reflected waves back from the spot, typically in less than 100 ns. The acoustic beam can be focused to a sufficiently small spot at a depth up to 2–3 mm to resolve typical interlaminar cracks and other critical crack geometries. The received echoes are analysed and stored for each point to build up an image of the entire scanned area. The reflected signal is monitored and sent to a synchronous display to develop a complete image, as in a scanning electron microscope.


Applications

- Fast production control - Standards : IPC A610, Mil-Std883, J-Std-035, Esa, etc - Parts sorting - Inspection of solder pads, flip-chip, underfill, die-attach - Sealing joints - Brazed and welded joints - Qualification and fast selection of glues, adhesive, comparative analyses of aging, etc - Inclusions, heterogeneities, porosities, cracks in material


Device testing

SAM is used for counterfeit detection, product reliability testing, process validation, vendor qualification, quality control, failure analysis, research, and development. Detecting discontinuities in silicon is just one of the ways scanning acoustic microscopy is being used for testing in the semiconductor market.


Medicine and biology

SAM can provide data on the elasticity of cells and tissues, which can give useful information on the physical forces holding structures in a particular shape and the mechanics of structures such as the
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is com ...
. These studies are particularly valuable in investigating processes such as cell
motility Motility is the ability of an organism to move independently, using metabolic energy. Definitions Motility, the ability of an organism to move independently, using metabolic energy, can be contrasted with sessility, the state of organisms th ...
. Some work has also been performed to assess penetration depth of particles injected into skin using needle-free injection Another promising direction was initiated by different groups to design and build portable hand-held SAM for subsurface diagnostics of soft and hard tissues Vogt, M., and Ermert, H., “Limited-angle spatial compounding imaging of skin with high-frequency ultrasound,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 55 (9), 1975 –1983 (2011) and this direction currently in the commercialization process in clinical and cosmetology practice.


See also

* Acoustic microscopy


References

{{DEFAULTSORT:Scanning Acoustic Microscope Acoustics Microscopes American inventions