Saturn's hexagon
   HOME

TheInfoList



OR:

Saturn's hexagon is a persistent approximately
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
al cloud pattern around the north pole of the planet Saturn, located at about 78°N. The sides of the hexagon are about long, which is about longer than the diameter of
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
. The hexagon may be a bit more than wide,NOTE: A planar
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
width (diameter) is twice the side (radius); but since the planet Saturn approximates an oblate spheroid, the radius of such an hexagon may be a bit greater than its side length (ie, 14,500 km), making the width (diameter) a bit greater than 29,000 km.
may be high, and may be a jet stream made of atmospheric gases moving at . It rotates with a period of , the same period as Saturn's radio emissions from its interior. The hexagon does not shift in longitude like other clouds in the visible atmosphere. Saturn's hexagon was discovered during the Voyager mission in 1981, and was later revisited by '' Cassini-Huygens'' in 2006. During the ''Cassini'' mission, the hexagon changed from a mostly blue color to more of a golden color. Saturn's south pole does not have a hexagon, as verified by Hubble observations. It does, however, have a
vortex In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in ...
, and there is also a vortex inside the northern hexagon. Multiple hypotheses for the hexagonal cloud pattern have been developed.


Discovery

Saturn's polar hexagon was discovered by David Godfrey in 1987 from piecing together fly-by views from the 1981 Voyager mission, and was revisited in 2006 by the
Cassini mission Cassini may refer to: People * Cassini (surname) * Oleg Cassini (1913-2006), American fashion designer :Cassini family: * Giovanni Domenico Cassini (1625–1712), Italian mathematician, astronomer, engineer, and astrologer * Jacques Cassini (167 ...
. Cassini was able to take only
thermal infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
images of the hexagon until it passed into sunlight in January 2009. Cassini was also able to take a video of the hexagonal weather pattern while traveling at the same speed as the planet, therefore recording only the movement of the hexagon. After its discovery, and after it came back into the sunlight, amateur astronomers managed to get images showing the hexagon from Earth, even with modest-sized telescopes.


Color

Between 2012 and 2016, the hexagon changed from a mostly blue color to more of a golden color. One theory for this is that sunlight is creating haze as the pole is exposed to sunlight due to the change in season. These changes were observed by the Cassini spacecraft.


Explanations for hexagon shape

One hypothesis, developed at Oxford University, is that the hexagon forms where there is a steep latitudinal
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
in the speed of the atmospheric winds in Saturn's atmosphere. Similar regular shapes were created in the laboratory when a circular tank of liquid was rotated at different speeds at its centre and periphery. The most common shape was six sided, but shapes with three to eight sides were also produced. The shapes form in an area of
turbulent flow In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between t ...
between the two different rotating fluid bodies with dissimilar speeds. A number of stable vortices of similar size form on the slower (south) side of the fluid boundary and these interact with each other to space themselves out evenly around the perimeter. The presence of the vortices influences the boundary to move northward where each is present and this gives rise to the polygon effect. Polygons do not form at wind boundaries unless the speed differential and viscosity parameters are within certain margins and so are not present at other likely places, such as Saturn's south pole or the poles of Jupiter. Other researchers claim that lab studies exhibit vortex streets, a series of spiraling vortices not observed in Saturn's hexagon. Simulations show that a shallow, slow, localized meandering jetstream in the same direction as Saturn's prevailing clouds are able to match the observed behaviors of Saturn's hexagon with the same boundary stability. Developing barotropic instability of Saturn's North Polar hexagonal circumpolar jet (Jet) plus North Polar vortex (NPV) system produces a long-living structure akin to the observed hexagon, which is not the case of the Jet-only system, which was studied in this context in a number of papers in literature. The north polar vortex (NPV), thus, plays a decisive dynamical role to stabilize hexagon jets. The influence of moist convection, which was recently suggested to be at the origin of Saturn's north polar vortex system in the literature, is investigated in the framework of the barotropic rotating shallow water model and does not alter the conclusions. A 2020 mathematical study at the California Institute of Technology, Andy Ingersoll laboratory found that a stable geometric arrangement of the polygons can occur on any planet when a storm is surrounded by a ring of winds turning in the opposite direction to the storms itself, called an anticyclonic ring, or anticyclonic shielding. Such shielding creates a vorticity gradient in the background of a neighbor cyclone, causing mutual rejection between the cyclones (similar to the effect of beta-drift). Although apparently shielded, the polar cyclone on Saturn cannot hold a polygonal pattern of circumpolar cyclones such as Jupiter's due to the bigger size and slower wind speed of Saturn's polar cyclone.


See also

* Titanian polar vortices


References


External links

*
Saturn Revolution 175
Cassini images, November 27, 2012
Saturn’s Strange Hexagon – In Living Color! – Universe Today

Edge of the hexagon
fro
Planetary Photojournal


APOD January 22, 2012

Astronomy Picture of the Day Astronomy Picture of the Day (APOD) is a website provided by NASA and Michigan Technological University (MTU). According to the website, "Each day a different image or photograph of our universe is featured, along with a brief explanation writt ...
– December 4, 2012
Video of hexagon's rotation
from NASA
NASA's Cassini Spacecraft Obtains Best Views of Saturn Hexagon
(December 4, 2013)

(TPS)
Hexagon image

Saturn's Hexagon Replicated In Laboratory
video
Hexagon Changes Color
(October 21, 2016) {{Portal bar, Physics, Stars, Spaceflight, Outer space, Science Saturn Planetary spots