SCN5A
   HOME

TheInfoList



OR:

Sodium channel protein type 5 subunit alpha, also known as NaV1.5 is an
integral membrane protein An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All ''transmembrane proteins'' are IMPs, but not all IMPs are transmembrane proteins. IMPs comprise a sign ...
and
tetrodotoxin Tetrodotoxin (TTX) is a potent neurotoxin. Its name derives from Tetraodontiformes, an order that includes pufferfish, porcupinefish, ocean sunfish, and triggerfish; several of these species carry the toxin. Although tetrodotoxin was discovere ...
-resistant voltage-gated
sodium channel Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels and can be classified according to the trigger that opens the chann ...
subunit. NaV1.5 is found primarily in
cardiac muscle Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle th ...
, where it mediates the fast influx of Na+-ions (INa) across the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
, resulting in the fast
depolarization In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is ess ...
phase of the cardiac
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
. As such, it plays a major role in impulse propagation through the heart. A vast number of cardiac diseases is associated with mutations in NaV1.5 (see paragraph
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
). ''SCN5A'' is the
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
that encodes the cardiac sodium channel NaV1.5.


Gene structure

SCN5A is a highly conserved gene located on human chromosome 3, where it spans more than 100 kb. The gene consists of 28 exons, of which exon 1 and in part exon 2 form the 5' untranslated region ( 5’UTR) and exon 28 the 3' untranslated region ( 3’UTR) of the RNA. SCN5A is part of a family of 10
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s that encode different types of sodium channels, i.e. brain-type ( NaV1.1, NaV1.2, NaV1.3, NaV1.6), neuronal channels ( NaV1.7, NaV1.8 and NaV1.9), skeletal muscle channels ( NaV1.4) and the cardiac sodium channel NaV1.5.


Expression pattern

SCN5A is mainly expressed in the heart, where expression is abundant in working myocardium and conduction tissue. In contrast, expression is low in the
sinoatrial node The sinoatrial node (also known as the sinuatrial node, SA node or sinus node) is an oval shaped region of special cardiac muscle in the upper back wall of the right atrium made up of cells known as pacemaker cells. The sinus node is approxima ...
and
atrioventricular node The atrioventricular node or AV node electrically connects the heart's atria and ventricles to coordinate beating in the top of the heart; it is part of the electrical conduction system of the heart. The AV node lies at the lower back section of t ...
. Within the heart, a transmural expression gradient from subendocardium to subsepicardium is present, with higher expression of SCN5A in the
endocardium The endocardium is the innermost layer of tissue that lines the chambers of the heart. Its cells are embryologically and biologically similar to the endothelial cells that line blood vessels. The endocardium also provides protection to the v ...
as compared to the
epicardium The pericardium, also called pericardial sac, is a double-walled sac containing the heart and the roots of the great vessels. It has two layers, an outer layer made of strong connective tissue (fibrous pericardium), and an inner layer made o ...
. SCN5A is also expressed in the gastrointestinal tract.


Splice variants

More than 10 different splice isoforms have been described for SCN5A, of which several harbour different functional properties. In the heart, two isoforms are mainly expressed (ratio 1:2), of which the least predominant one contains an extra glutamine at position 1077 (1077Q). Moreover, different isoforms are expressed during fetal life and adult, differing in the inclusion of an alternative exon 6.


Protein structure and function

NaV1.5 is a large
transmembrane protein A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequent ...
with 4 repetitive transmembrane domains (DI-DIV), containing 6 transmembrane spanning sections each (S1-S6). The pore region of the channels, through which Na+-ions flow, are formed by the segments S5 and S6 of the 4 domains. Voltage sensing is mediated by the remaining segments, of which the positively charged S4 segments plays a fundamental role. NaV1.5 channels predominantly mediate the sodium current (INa) in cardiac cells. INa is responsible for the fast upstroke of the action potential, and as such plays a crucial role in impulse propagation through the heart. The conformational state of the channel, which is both voltage and time-dependent, determines whether the channel is opened or closed. At the resting membrane potential (around -85 mV), NaV1.5 channels are closed. Upon a stimulus (through conduction by a neighboring cell), the membrane depolarizes and NaV1.5 channels open through the outward movement of the S4 segments, leading to the initiation of the action potential. Simultaneously, a process called 'fast inactivation' results in closure of the channels within a few milliseconds. In physiological conditions, when inactivated, channels remain in closed state until the cell membrane repolarizes, where a recovery from inactivation is necessary before they become available for activation again. During the action potential, a very small fraction of sodium current persists and does not inactivate completely. This current is called 'sustained current', 'late current' or 'INa,L’. Also, some channels may reactivate during the repolarizing phase of the action potential at a range of potentials where inactivation is not complete and shows overlap with activation, generating the so-called "window current".


Sub-units and protein interaction partners

Trafficking, function and structure of NaV1.5 can be affected by the many protein interaction partners that have been identified to date (for an extensive review, see Abriel et al. 2010). Of these, the 4 sodium channel beta-subunits, encoded by the genes SCN1B, SCN2B,
SCN3B Sodium channel subunit beta-3 is a protein that in humans is encoded by the ''SCN3B'' gene. Two alternatively spliced variants, encoding the same protein, have been identified. Function Voltage-gated sodium channels are transmembrane glycoprote ...
and SCN4B, form an important category. In general, beta-subunits increase function of NaV1.5, either by change in intrinsic properties or by affecting the process of trafficking to the cell surface. Apart from the beta-subunits, other proteins, such as calmodulin, calmodulin kinase II δc, ankyrin-G and
plakophilin-2 Plakophilin-2 is a protein that in humans is encoded by the ''PKP2'' gene. Plakophilin 2 is expressed in skin and cardiac muscle, where it functions to link cadherins to intermediate filaments in the cytoskeleton. In cardiac muscle, plakophilin-2 i ...
, are known to interact and modulate function of NaV1.5. Some of these have also been linked to genetic and acquired cardiac diseases.


Genetics

Mutations in SCN5A, which could result in a loss and/or a gain-of-function of the channel, are associated with a spectrum of cardiac diseases. Pathogenic mutations generally exhibit an autosomal dominant inheritance pattern, although compound heterozygote forms of SCN5A mutations are also described. Also, mutations may act as a disease modifier, especially in families where lack of direct causality is reflected by complex inheritance patterns. It is important to note that a significant number of individuals (2-7%) in the general population carry a rare (population frequency <1%), protein-altering variant in the gene, highlighting the complexity of linking mutations directly with observed phenotypes. Mutations that result in the same biophysical effect can give rise to different diseases. To date, loss-of-function mutations have been associated with Brugada syndrome (BrS), progressive cardiac conduction disease ( Lev-Lenègre disease),
dilated cardiomyopathy Dilated cardiomyopathy (DCM) is a condition in which the heart becomes enlarged and cannot pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Co ...
(DCM), sick sinus syndrome, and atrial fibrillation. Mutations resulting in a gain-of-function are causal for Long QT syndrome type 3 and are also more recently implicated in multifocal ectopic Purkinje-related premature contractions (MEPPC) Some gain-of-function mutations are also associated with AF and DCM. Gain-of-function of NaV1.5 is generally reflected by an increase in INa,L, a slowed rate of inactivation or a shift in voltage dependence of activation or inactivation (resulting in an increased window-current). SCN5A mutations are believed to be found in a disproportionate number of people who have
Irritable Bowel Syndrome Irritable bowel syndrome (IBS) is a "disorder of gut-brain interaction" characterized by a group of symptoms that commonly include abdominal pain and or abdominal bloating and changes in the consistency of bowel movements. These symptoms may ...
, particularly the constipation-predominant variant (IBS-C). The resulting defect leads to disruption in bowel function, by affecting the Nav1.5 channel, in smooth muscle of the colon and pacemaker cells. Researchers managed to treat a case of IBS-C with
mexiletine Mexiletine ( INN) (sold under the brand names Mexitil and Namuscla) is a medication used to treat abnormal heart rhythms, chronic pain, and some causes of muscle stiffness. Common side effects include abdominal pain, chest discomfort, drowsiness ...
to restore Nav1.5 channels, reversing constipation and
abdominal pain Abdominal pain, also known as a stomach ache, is a symptom associated with both non-serious and serious medical issues. Common causes of pain in the abdomen include gastroenteritis and irritable bowel syndrome. About 15% of people have a m ...
.


SCN5A variations in the general population

Genetic variations in SCN5A, i.e. single nucleotide polymorphisms (SNPs) have been described in both coding and non-coding regions of the gene. These variations are typically present at relatively high frequencies within the general population. Genome Wide Association Studies (
GWAS In genomics, a genome-wide association study (GWA study, or GWAS), also known as whole genome association study (WGA study, or WGAS), is an observational study of a genome-wide set of genetic variants in different individuals to see if any varian ...
) have used this type of common genetic variation to identify genetic loci associated with variability in phenotypic traits. In the cardiovascular field this powerful technique has been used to detect loci involved in variation in electrocardiographic parameters (i.e. PR-, QRS- and QTc-interval duration) in the general population. The rationale behind this technique is that common genetic variation present in the general population can influence cardiac conduction in non-diseased individuals. these studies consistently identified the SCN5A-SCN10A genomic region on chromosome 3 to be associated with variation in QTc-interval, QRS duration and PR-interval. These results indicate that genetic variation at the SCN5A locus is not only involved in disease genetics but also plays a role in the variation in cardiac function between individuals in the general population.


NaV1.5 as a pharmacological target

The cardiac sodium channel NaV1.5 has long been a common target in the pharmacologic treatment of arrhythmic events. Classically,
sodium channel blocker Sodium channel blockers are drugs which impair the conduction of sodium ions (Na+) through sodium channels. Extracellular The following naturally-produced substances block sodium channels by binding to and occluding the extracellular pore opening ...
s that block the peak sodium current are classified as Class I anti-arrhythmic agents and further subdivided in class IA, IB and IC, depending on their ability to change the length of the cardiac action potential. Use of such sodium channel blockers is among others indicated in patients with ventricular reentrant tachyarrhythmia in the setting of cardiac ischemia and in patients with atrial fibrillation in absence of structural heart disease.


See also

*
Atrioventricular block Atrioventricular block (AV block) is a type of heart block that occurs when the electrical signal traveling from the atria, or the upper chambers of the heart, to ventricles, or the lower chambers of the heart, is impaired. Normally, the sinoatr ...
* Brugada syndrome *
Electrical conduction system of the heart The cardiac conduction system (CCS) (also called the electrical conduction system of the heart) transmits the signals generated by the sinoatrial node – the heart's pacemaker, to cause the heart muscle to contract, and pump blood through ...
* Electrocardiogram (ECG) *
First-degree AV block First-degree atrioventricular block (AV block) is a disease of the electrical conduction system of the heart in which electrical impulses conduct from the cardiac atria to the ventricles through the atrioventricular node (AV node) more slowly tha ...
* long QT syndrome *
Second-degree AV block Second-degree atrioventricular block (AV block) is a disease of the electrical conduction system of the heart. It is a conduction block between the atria and ventricles. The presence of second-degree AV block is diagnosed when one or more (but n ...
*
Sodium channel Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels and can be classified according to the trigger that opens the chann ...


Notes


References


Further reading

* * *


External links


GeneReviews/NIH/NCBI/UW entry on Brugada syndrome

GeneReviews/NIH/NCBI/UW entry on Romano-Ward Syndrome
* * {{Ion channels, g2 Electrophysiology Sodium channels