HOME
The Info List - SCMaglev And Railway Park



--- Advertisement ---


(i) (i) (i) (i) (i)

The SCMAGLEV (superconducting maglev) (formerly called the MLU) is a magnetic levitation (maglev ) railway system based on the principle of magnetic repulsion between the track and the cars. The Central Japan Railway
Railway
Company (JR Central) and the company's Railway
Railway
Technical Research Institute developed the system.

On 21 April 2015, a manned seven-car L0 series
L0 series
SC Maglev train reached a speed of 603 km/h (375 mph), less than a week after the same train clocked 590 km/h (370 mph), breaking the previous land speed record for rail vehicles of 581 km/h (361 mph) set by a JR Central MLX01 maglev train in December 2003.

CONTENTS

* 1 Technology

* 2 History

* 2.1 Miyazaki test track * 2.2 Yamanashi maglev test line

* 3 Commercial use

* 3.1 Japan
Japan
* 3.2 USA * 3.3 Australia

* 4 Vehicles

* 5 Records

* 5.1 Manned records * 5.2 Unmanned records * 5.3 Relative passing speed records

* 6 See also * 7 References * 8 Further reading * 9 External links

TECHNOLOGY

MLX01 maglev train Superconducting magnet
Superconducting magnet
bogie Levitation and guidance coils See also: Maglev § Technology

The SC Maglev system uses an electrodynamic suspension (EDS) system. Installed in the trains' bogies are superconducting magnets, and the guideways contain two sets of metal coils.

The current levitation system utilizes a series of coils wound into a "figure 8" along both walls of the guideway. These coils are also cross-connected underneath the track.

Levitation system Guidance system

Propulsion system

As the train accelerates, the magnetic fields of its superconducting magnets induce a current into these coils due to the magnetic field induction effect . If the train were centered with the coils, the electrical potential would be balanced and no currents would be induced. However, as the train runs on rubber wheels at relatively low speeds, the magnetic fields are positioned below the center of the coils, causing the electrical potential to no longer be balanced. This creates a reactive magnetic field opposing the superconducting magnet's pole (in accordance with Lenz\'s law ), and a pole above that attracts it. Once the train reaches 150 km/h (93 mph), there is sufficient current flowing to lift the train 100 mm (4 in) above the guideway.

These coils also generate guiding and stabilizing forces. Because they are cross-connected underneath the guideway, if the train moves off-center, currents are induced into the connections that correct its positioning.

SC Maglev also utilizes a linear synchronous motor (LSM) propulsion system, which powers a second set of coils in the guideway.

HISTORY

Japanese National Railways
Japanese National Railways
(JNR) began research on a linear propulsion railway system in 1962 with the goal of developing a train that could travel between Tokyo
Tokyo
and Osaka
Osaka
in one hour. Shortly after Brookhaven National Laboratory patented superconducting magnetic levitation technology in the United States in 1969, JNR announced development of the its own superconducting maglev (SCMaglev) system. The railway made its first successful SC Maglev run on a short track at its Railway
Railway
Technical Research Institute in 1972.

MIYAZAKI TEST TRACK

In 1977, SC Maglev testing moved to a new 7 km test track in Hyūga, Miyazaki . By 1980, the track was modified from a "reverse-T" shape to the "U" shape used today. In April 1987, JNR was privatized, and Central Japan
Japan
Railway
Railway
Company (JR Central) took over SCMaglev development.

In 1989, JR Central decided to build a better testing facility with tunnels, steeper gradients, and curves. After the company moved maglev tests to the new facility, the company's Railway
Railway
Technical Research Institute began to allow testing of ground effect trains , an alternate technology based on aerodynamic interaction between the train and the ground, at the Miyazaki Test Track in 1999.

YAMANASHI MAGLEV TEST LINE

See also: Chūō Shinkansen § Miyazaki and Yamanashi Test Tracks

Construction of the Yamanashi maglev test line began in 1990. The 18.4 km (11.4 mi) "priority section" of the line in Tsuru, Yamanashi
Tsuru, Yamanashi
, opened in 1997. MLX01 trains were tested there from 1997 to fall 2011, when the facility was closed to extend the line to 42.8 km (26.6 mi) and to upgrade it to commercial specifications.

COMMERCIAL USE

JAPAN

In 2009, Japan's Ministry of Land, Infrastructure, Transport and Tourism decided that the SC Maglev system was ready for commercial operation. In 2011, the ministry gave JR Central permission to operate the SC Maglev system on their planned Chūō Shinkansen linking Tokyo and Nagoya
Nagoya
by 2027, and to Osaka
Osaka
by 2045. Construction is currently underway.

USA

Since 2010, JR Central has promoted the SC Maglev system in international markets, particularly the Northeast Corridor of the United States. In 2013, Prime Minister Shinzō Abe met with U.S. President Barack Obama
Barack Obama
and offered to provide the first portion of the SC Maglev track free, a distance of approximately 40 miles.

AUSTRALIA

In late 2015, JR Central partnered with Mitsui and General Electric in Australia to form a joint venture named CLARA ("Consolidated Land and Rail Australia") to provide a commercial funding model using private investors that could build the SC Maglev (linking Sydney, Canberra and Melbourne), create 8 new self-sustaining inland cities linked to the high speed connection, and contribute to the community.

VEHICLES

ML100 preserved at the RTRI facility in Kokubunji, Tokyo, October 2015 ML500 1979 world speed record holder of 517 km/h (321 mph) preserved at the RTRI facility in Kokubunji, Tokyo, October 2015. Similar model burned after a fire at Kyushu Test Track in 1979, leading to redesign as MLU series vehicles MLU001's superconducting magnet and a liquid helium tank on top of it JR– Maglev MLX01-1 at SC Maglev and Railway
Railway
Park , Nagoya, April 2013 MLX01-3 preserved at the RTRI facility in Kokubunji, Tokyo, October 2015

* 1972 – LSM200 * 1972 – ML100 * 1975 – ML100A * 1977 – ML500 * 1979 – ML500R (remodeled ML500) * 1980 – MLU001 * 1987 – MLU002 * 1993 – MLU002N * 1995 – MLX01 (MLX01-1, 11, 2) * 1997 – MLX01 (MLX01-3, 21, 12, 4) * 2002 – MLX01 (MLX01-901, 22) * 2009 – MLX01 (MLX01-901A, 22A: remodeled 901 and 22) * 2013 – L0 Series Shinkansen

NO. TYPE NOTE BUILT

MLX01-1 Kōfu-end car with double-cusp head Displayed at the SC Maglev and Railway
Railway
Park 1995

MLX01-11 Standard intermediate car

MLX01-2 Tokyo-end car with aero-wedge head

MLX01-3 Kōfu-end car with aero-wedge head Displayed at the Railway
Railway
Technical Research Institute 1997

MLX01-21 Long intermediate car

MLX01-12 Standard intermediate car

MLX01-4 Tokyo-end car with double-cusp head

MLX01-901A Kōfu-end car with long head Remodeled and renamed from MLX01-901 in 2009 2002

MLX01-22A long intermediate car Remodeled and renamed from MLX01-22 in 2009

RECORDS

MANNED RECORDS

SPEED TRAIN TYPE LOCATION DATE COMMENTS

60 (37) ML100 Maglev RTRI of JNR 1972

400.8 (249.0) MLU001 Maglev Miyazaki Maglev Test Track February 1987 Two-car train set. Former world speed record for maglev trains .

394.3 (245.0) MLU002 Maglev Miyazaki Maglev Test Track November 1989 Single-car

411 (255) MLU002N Maglev Miyazaki Maglev Test Track February 1995 Single-car

531 (330) MLX01 Maglev Yamanashi Maglev Test Line, Japan 12 December 1997 Three-car train set. Former world speed record for maglev trains.

552 (343) MLX01 Maglev Yamanashi Maglev Test Line 14 April 1999 Five-car train set. Former world speed record for maglev trains.

581 (361) MLX01 Maglev Yamanashi Maglev Test Line 2 December 2003 Three-car train set. Former world speed record for all trains.

590 (367) L0 series
L0 series
Maglev Yamanashi Maglev Test Line 16 April 2015 Seven-car train set. Former world speed record for all trains.

603 (375) L0 series Maglev Yamanashi Maglev Test Line 21 April 2015 Seven-car train set. Current world speed record for all trains.

UNMANNED RECORDS

SPEED TRAIN TYPE LOCATION DATE COMMENTS

504 (313.2) ML-500 Maglev Miyazaki Maglev Test Track 12 December 1979

517 (321.2) ML-500 Maglev Miyazaki Maglev Test Track 21 December 1979

352.4 (219.0) MLU001 Maglev Miyazaki Maglev Test Track January 1986 Three-car train set

405.3 (251.8) MLU001 Maglev Miyazaki Maglev Test Track January 1987 Two-car train set

431 (267.8) MLU002N Maglev Miyazaki Maglev Test Track February 1994 Single-car

550 (341.8) MLX01 Maglev Yamanashi Maglev Test Line 24 December 1997 Three-car train set

548 (340.5) MLX01 Maglev Yamanashi Maglev Test Line 18 March 1999 Five-car train set

RELATIVE PASSING SPEED RECORDS

SPEED TRAIN TYPE LOCATION DATE COMMENTS

966 (600) MLX01 Maglev Yamanashi Maglev Test Line December 1998 Former world relative passing speed record

1,003 (623) MLX01 Maglev Yamanashi Maglev Test Line November 1999 Former world relative passing speed record

1,026 (638) MLX01 Maglev Yamanashi Maglev Test Line 16 November 2004 Current world relative passing speed record

SEE ALSO

* MAGLEV 2000 * Transrapid
Transrapid
* Krauss-Maffei Transurban - Electromagnetic suspension
Electromagnetic suspension
technology had been transferred from Krauss-Maffei . * ROMAG * Inductrack

REFERENCES

* Hood, Christopher P. (2006). Shinkansen
Shinkansen
– From Bullet Train to Symbol of Modern Japan. Routledge. ISBN 0-415-32052-6 .

* ^ A B Central Japan
Japan
Railway
Railway
Company (11 May 2010). Test Ride of Superconducting Maglev by the US Secretary of Transportation, Mr. Ray LaHood. Retrieved 24 May 2012. * ^ Central Japan
Japan
Railway
Railway
Company (2012). "Central Japan
Japan
Railway Company Annual Report 2012" (PDF). pp. 23–25. Retrieved 23 July 2013. * ^ A B C D He, J.L.; Rote, D.M.; Coffey, H.T. (1994). "Study of Japanese Electrodynamic-Suspension Maglev Systems". Argonne National Laboratory . OSTI 10150166 . doi :10.2172/10150166 . Retrieved 26 December 2014. * ^ A B McCurry, Justin (21 April 2015). "Japan\'s Maglev Train Breaks World Speed Record with 600km/h Test Run". The Guardian (U.S. ed.). New York. Retrieved 21 April 2015. * ^ A B U.S.- Japan
Japan
Maglev (2012). "History". USJMAGLEV. Retrieved 26 December 2014. * ^ Central Japan
Japan
Railway
Railway
Company (2012). "The Chuo Shinkansen Using the Superconducting Maglev System". Data Book 2012 (PDF). pp. 24–25. * ^ Pfanner, Eric (19 November 2013). " Japan
Japan
Pitches Its High-Speed Train With an Offer to Finance". The New York Times (New York ed.). p. B8. Retrieved 28 April 2015. * ^ "General Electric, Japan