Runcitruncated 16-cell
   HOME

TheInfoList



OR:

In four-dimensional
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a runcinated tesseract (or ''runcinated 16-cell'') is a convex
uniform 4-polytope In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons. There are 47 non-prismatic convex uniform 4-polytopes. Th ...
, being a
runcination In geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers. It is a higher order truncatio ...
(a 3rd order truncation) of the regular
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
. There are 4 variations of runcinations of the tesseract including with permutations truncations and cantellations.


Runcinated tesseract

The runcinated tesseract or (small) disprismatotesseractihexadecachoron has 16
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, 32 cubes, and 32
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
s. Each vertex is shared by 4 cubes, 3 triangular prisms and one tetrahedron.


Construction

The runcinated tesseract may be constructed by expanding the cells of a
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
radially, and filling in the gaps with tetrahedra (vertex figures), cubes (face prisms), and triangular prisms (edge figure prisms). The same process applied to a
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
also yields the same figure.


Cartesian coordinates

The Cartesian coordinates of the vertices of the runcinated tesseract with edge length 2 are all permutations of: :\left(\pm 1,\ \pm 1,\ \pm 1,\ \pm(1+\sqrt)\right)


Images


Structure

Eight of the cubical cells are connected to the other 24 cubical cells via all 6 square faces. The other 24 cubical cells are connected to the former 8 cells via only two opposite square faces; the remaining 4 faces are connected to the triangular prisms. The triangular prisms are connected to the tetrahedra via their triangular faces. The
runcinated tesseract In four-dimensional geometry, a runcinated tesseract (or ''runcinated 16-cell'') is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular tesseract. There are 4 variations of runcinations of the tesseract includi ...
can be dissected into 2
cubic cupola In 4-dimensional geometry, the cubic cupola is a 4-polytope bounded by a rhombicuboctahedron, a parallel cube, connected by 6 square prisms, 12 triangular prisms, 8 triangular pyramids.rhombicuboctahedral prism between them. This dissection can be seen analogous to the 3D
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ea ...
being
dissected Dissection (from Latin ' "to cut to pieces"; also called anatomization) is the dismembering of the body of a deceased animal or plant to study its anatomical structure. Autopsy is used in pathology and forensic medicine to determine the cause ...
into two
square cupola In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in t ...
and a central
octagonal prism In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. Symmetry Images The octagonal prism can also ...
.


Projections

The cube-first orthographic projection of the runcinated tesseract into 3-dimensional space has a (small) rhombicuboctahedral envelope. The images of its cells are laid out within this envelope as follows: * The nearest and farthest cube from the 4d viewpoint projects to a cubical volume in the center of the envelope. * Six cuboidal volumes connect this central cube to the 6 axial square faces of the rhombicuboctahedron. These are the images of 12 of the cubical cells (each pair of cubes share an image). * The 18 square faces of the envelope are the images of the other cubical cells. * The 12 wedge-shaped volumes connecting the edges of the central cube to the non-axial square faces of the envelope are the images of 24 of the triangular prisms (a pair of cells per image). * The 8 triangular faces of the envelope are the images of the remaining 8 triangular prisms. * Finally, the 8 tetrahedral volumes connecting the vertices of the central cube to the triangular faces of the envelope are the images of the 16 tetrahedra (again, a pair of cells per image). This layout of cells in projection is analogous to the layout of the faces of the (small)
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ea ...
under projection to 2 dimensions. The rhombicuboctahedron is also constructed from the cube or the
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
in an analogous way to the runcinated tesseract. Hence, the runcinated tesseract may be thought of as the 4-dimensional analogue of the rhombicuboctahedron.


Runcitruncated tesseract

The runcitruncated tesseract, runcicantellated 16-cell, or prismatorhombated hexadecachoron is bounded by 80 cells: 8
truncated cube In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edg ...
s, 16 cuboctahedra, 24
octagonal prism In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. Symmetry Images The octagonal prism can also ...
s, and 32
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
s.


Construction

The runcitruncated tesseract may be constructed from the
truncated tesseract In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the ''truncated 16-cell''. Truncated tesserac ...
by expanding the
truncated cube In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edg ...
cells outward radially, and inserting octagonal prisms between them. In the process, the
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
expand into cuboctahedra, and triangular prisms fill in the remaining gaps. The
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s of the vertices of the runcitruncated tesseract having an edge length of 2 is given by all permutations of: :\left(\pm1,\ \pm(1+\sqrt),\ \pm(1+\sqrt),\ \pm(1+2\sqrt)\right)


Projections

In the truncated cube first parallel projection of the runcitruncated tesseract into 3-dimensional space, the projection image is laid out as follows: * The projection envelope is a non-uniform (small)
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ea ...
, with 6 square faces and 12 rectangular faces. * Two of the truncated cube cells project to a truncated cube in the center of the projection envelope. * Six octagonal prisms connect this central truncated cube to the square faces of the envelope. These are the images of 12 of the octagonal prism cells, two cells to each image. * The remaining 12 octagonal prisms are projected to the rectangular faces of the envelope. * The 6 square faces of the envelope are the images of the remaining 6 truncated cube cells. * Twelve right-angle triangular prisms connect the inner octagonal prisms. These are the images of 24 of the triangular prism cells. The remaining 8 triangular prisms project onto the triangular faces of the envelope. * The 8 remaining volumes lying between the triangular faces of the envelope and the inner truncated cube are the images of the 16 cuboctahedral cells, a pair of cells to each image.


Images


Stereographic projection with its 128 blue triangular faces and its 192 green quad faces.


Runcitruncated 16-cell

The runcitruncated 16-cell, runcicantellated tesseract, or prismatorhombated tesseract is bounded by 80 cells: 8 rhombicuboctahedra, 16
truncated tetrahedra In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedron ...
, 24 cubes, and 32
hexagonal prism In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.. Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used ...
s.


Construction

The runcitruncated 16-cell may be constructed by contracting the small rhombicuboctahedral cells of the cantellated tesseract radially, and filling in the spaces between them with cubes. In the process, the octahedral cells expand into truncated tetrahedra (half of their triangular faces are expanded into hexagons by pulling apart the edges), and the triangular prisms expand into hexagonal prisms (each with its three original square faces joined, as before, to small rhombicuboctahedra, and its three new square faces joined to cubes). The vertices of a runcitruncated 16-cell having an edge length of 2 is given by all permutations of the following
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s: :\left(\pm1,\ \pm1,\ \pm(1+\sqrt),\ \pm(1+2\sqrt)\right)


Images


Structure

The small rhombicuboctahedral cells are joined via their 6 axial square faces to the cubical cells, and joined via their 12 non-axial square faces to the hexagonal prisms. The cubical cells are joined to the rhombicuboctahedra via 2 opposite faces, and joined to the hexagonal prisms via the remaining 4 faces. The hexagonal prisms are connected to the truncated tetrahedra via their hexagonal faces, and to the rhombicuboctahedra via 3 of their square faces each, and to the cubes via the other 3 square faces. The truncated tetrahedra are joined to the rhombicuboctahedra via their triangular faces, and the hexagonal prisms via their hexagonal faces.


Projections

The following is the layout of the cells of the runcitruncated 16-cell under the parallel projection, small rhombicuboctahedron first, into 3-dimensional space: * The projection envelope is a truncated cuboctahedron. * Six of the small rhombicuboctahedra project onto the 6 octagonal faces of this envelope, and the other two project to a small rhombicuboctahedron lying at the center of this envelope. * The 6 cuboidal volumes connecting the axial square faces of the central small rhombicuboctahedron to the center of the octagons correspond with the image of 12 of the cubical cells (each pair of the twelve share the same image). * The remaining 12 cubical cells project onto the 12 square faces of the great rhombicuboctahedral envelope. * The 8 volumes connecting the hexagons of the envelope to the triangular faces of the central rhombicuboctahedron are the images of the 16 truncated tetrahedra. * The remaining 12 spaces connecting the non-axial square faces of the central small rhombicuboctahedron to the square faces of the envelope are the images of 24 of the hexagonal prisms. * Finally, the last 8 hexagonal prisms project onto the hexagonal faces of the envelope. This layout of cells is similar to the layout of the faces of the great rhombicuboctahedron under the projection into 2-dimensional space. Hence, the runcitruncated 16-cell may be thought of as one of the 4-dimensional analogues of the great rhombicuboctahedron. The other analogue is the
omnitruncated tesseract In four-dimensional geometry, a runcinated tesseract (or ''runcinated 16-cell'') is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular tesseract. There are 4 variations of runcinations of the tesseract inclu ...
.


Omnitruncated tesseract

The omnitruncated tesseract, omnitruncated 16-cell, or great disprismatotesseractihexadecachoron is bounded by 80 cells: 8 truncated cuboctahedra, 16
truncated octahedra In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 ...
, 24
octagonal prism In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. Symmetry Images The octagonal prism can also ...
s, and 32
hexagonal prism In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.. Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used ...
s.


Construction

The omnitruncated tesseract can be constructed from the cantitruncated tesseract by radially displacing the truncated cuboctahedral cells so that octagonal prisms can be inserted between their octagonal faces. As a result, the triangular prisms expand into hexagonal prisms, and the truncated tetrahedra expand into truncated octahedra. The
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s of the vertices of an omnitruncated tesseract having an edge length of 2 are given by all permutations of coordinates and sign of: :\left(1,\ 1+\sqrt,\ 1+2\sqrt,\ 1+3\sqrt\right)


Structure

The truncated cuboctahedra cells are joined to the octagonal prisms via their octagonal faces, the truncated octahedra via their hexagonal faces, and the hexagonal prisms via their square faces. The octagonal prisms are joined to the hexagonal prisms and the truncated octahedra via their square faces, and the hexagonal prisms are joined to the truncated octahedra via their hexagonal faces. Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal
f-vector Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral co ...
numbers are derived through the
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
, dividing the full group order of a subgroup order by removing one mirror at a time. Edges exist at 4 symmetry positions. Squares exist at 3 positions, hexagons 2 positions, and octagons one. Finally the 4 types of cells exist centered on the 4 corners of the fundamental simplex.


Projections

In the truncated cuboctahedron first parallel projection of the omnitruncated tesseract into 3 dimensions, the images of its cells are laid out as follows: * The projection envelope is in the shape of a non-uniform truncated cuboctahedron. * Two of the truncated cuboctahedra project to the center of the projection envelope. * The remaining 6 truncated cuboctahedra project to the (non-regular) octagonal faces of the envelope. These are connected to the central truncated cuboctahedron via 6 octagonal prisms, which are the images of the octagonal prism cells, a pair to each image. * The 8 hexagonal faces of the envelope are the images of 8 of the hexagonal prisms. * The remaining hexagonal prisms are projected to 12 non-regular hexagonal prism images, lying where a cube's edges would be. Each image corresponds to two cells. * Finally, the 8 volumes between the hexagonal faces of the projection envelope and the hexagonal faces of the central truncated cuboctahedron are the images of the 16 truncated octahedra, two cells to each image. This layout of cells in projection is similar to that of the runcitruncated 16-cell, which is analogous to the layout of faces in the octagon-first projection of the truncated cuboctahedron into 2 dimensions. Thus, the omnitruncated tesseract may be thought of as another analogue of the truncated cuboctahedron in 4 dimensions.


Images


Full snub tesseract

The full snub tesseract or omnisnub tesseract, defined as an alternation of the omnitruncated tesseract, can not be made uniform, but it can be given Coxeter diagram , and symmetry ,3,3sup>+, and constructed from 8
snub cube In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices. It is a chiral polyhedron; that is, it has two distinct forms, which are mirr ...
s, 16
icosahedra In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
, 24
square antiprism In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an ''anticube''. If all its faces are regular, it is a sem ...
s, 32
octahedra In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet a ...
(as triangular antiprisms), and 192
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
filling the gaps at the deleted vertices. It has 272 cells, 944 faces, 864 edges, and 192 vertices.


Bialternatosnub 16-cell

The bialternatosnub 16-cell or runcic snub rectified 16-cell, constructed by removing alternating long rectangles from the octagons, is also not uniform. Like the omnisnub tesseract, it has a highest symmetry construction of order 192, with 8 rhombicuboctahedra (with ''Th'' symmetry), 16
icosahedra In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
(with ''T'' symmetry), 24 rectangular trapezoprisms (topologically equivalent to a cube but with ''D2d'' symmetry), 32
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
s, with 96
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
s (as ''Cs''-symmetry wedges) filling the gaps. A variant with regular
icosahedra In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
and uniform
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
s has two edge lengths in the ratio of 1 : 2, and occurs as a vertex-faceting of the scaliform runcic snub 24-cell.


Related uniform polytopes


Notes


References

* T. Gosset: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900 * H.S.M. Coxeter: ** Coxeter, ''
Regular Polytopes In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
'', (3rd edition, 1973), Dover edition, , p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45*
John H. Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, (Chapter 26. pp. 409: Hemicubes: 1n1) * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) * * http://www.polytope.de/nr17.html * x3o3o4x - sidpith, x3o3x4x - proh, x3x3o4x - prit, x3x3x4x - gidpith


External links

* H4 uniform polytopes with coordinates
t03t013t013t0123
{{Polytopes 4-polytopes