Respiratory quotient
   HOME

TheInfoList



OR:

The respiratory quotient (RQ or respiratory coefficient) is a
dimensionless number A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1) ...
used in calculations of
basal metabolic rate Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. It is reported in energy units per unit time ranging from watt (joule/second) to ml O2/min or joule per hour per kg body mass J/(h·kg). Pro ...
(BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body. Such measurements, like measurements of oxygen uptake, are forms of indirect
calorimetry In chemistry and thermodynamics, calorimetry () is the science or act of measuring changes in ''state variables'' of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reac ...
. It is measured using a respirometer. The respiratory quotient value indicates which macronutrients are being metabolized, as different energy pathways are used for fats, carbohydrates, and proteins. If metabolism consists solely of lipids, the respiratory quotient is approximately 0.7, for proteins it is approximately 0.8, and for carbohydrates it is 1.0. Most of the time, however, energy consumption is composed of both fats and carbohydrates. The approximate respiratory quotient of a mixed diet is 0.8. Some of the other factors that may affect the respiratory quotient are energy balance, circulating insulin, and insulin sensitivity. It can be used in the
alveolar gas equation The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (PAO2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in cl ...
.


Calculation

The respiratory quotient (RQ) is the ratio: RQ = CO2 eliminated / O2 consumed where the term "eliminated" refers to carbon dioxide (CO2) removed from the body. In this calculation, the CO2 and O2 must be given in the same units, and in quantities proportional to the number of molecules. Acceptable inputs would be either
moles Moles can refer to: * Moles de Xert, a mountain range in the Baix Maestrat comarca, Valencian Community, Spain * The Moles (Australian band) *The Moles, alter ego of Scottish band Simon Dupree and the Big Sound People *Abraham Moles, French engin ...
, or else volumes of gas at standard temperature and pressure. Many metabolized substances are compounds containing only the elements
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
. Examples include
fatty acids In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an B ...
,
glycerol Glycerol (), also called glycerine in British English and glycerin in American English, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids known ...
, carbohydrates,
deamination Deamination is the removal of an amino group from a molecule. Enzymes that catalyse this reaction are called deaminases. In the human body, deamination takes place primarily in the liver, however it can also occur in the kidney. In situations of ...
products, and
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
. For complete oxidation of such compounds, the chemical equation is CxHyOz + (x + y/4 - z/2) O2 → x CO2 + (y/2) H2O and thus metabolism of this compound gives an RQ of x/(x + y/4 - z/2). For glucose, with the molecular formula, C6H12O6, the complete oxidation equation is C6H12O6 + 6 O2 → 6 CO2+ 6 H2O. Thus, the RQ= 6 CO2/ 6 O2=1. For fats, the RQ depends on the specific fatty acids present. Amongst the commonly stored fatty acids in vertebrates, RQ varies from 0.692 (stearic acid) to as high as 0.759 (docosahexaenoic acid). Historically, it was assumed that 'average fat' had an RQ of about 0.71, and this holds true for most mammals including humans. However, a recent survey showed that aquatic animals, especially fish, have fat that should yield higher RQs on oxidation, reaching as high as 0.73 due to high amounts of docosahexaenoic acid. The range of respiratory coefficients for organisms in metabolic balance usually ranges from 1.0 (representing the value expected for pure carbohydrate oxidation) to ~0.7 (the value expected for pure fat oxidation). In general, molecules that are more oxidized (e.g., glucose) require less oxygen to be fully metabolized and, therefore, have higher respiratory quotients. Conversely, molecules that are less oxidized (e.g., fatty acids) require more oxygen for their complete metabolism and have lower respiratory quotients. See BMR for a discussion of how these numbers are derived. A mixed diet of fat and carbohydrate results in an average value between these numbers. RQ value corresponds to a caloric value for each liter (L) of CO2 produced. If O2 consumption numbers are available, they are usually used directly, since they are more direct and reliable estimates of energy production. RQ as measured includes a contribution from the energy produced from protein. However, due to the complexity of the various ways in which different amino acids can be metabolized, no single RQ can be assigned to the oxidation of protein in the diet. Insulin, which increases lipid storage and decreases fat oxidation, is positively associated with increases in the respiratory quotient. A positive energy balance will also lead to an increased respiratory quotient.


Applications

Practical applications of the respiratory quotient can be found in severe cases of
chronic obstructive pulmonary disease Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by long-term respiratory symptoms and airflow limitation. The main symptoms include shortness of breath and a cough, which may or may not produce ...
, in which patients spend a significant amount of energy on respiratory effort. By increasing the proportion of fats in the diet, the respiratory quotient is driven down, causing a relative decrease in the amount of CO2 produced. This reduces the respiratory burden to eliminate CO2, thereby reducing the amount of energy spent on respirations. Respiratory Quotient can be used as an indicator of over or underfeeding. Underfeeding, which forces the body to utilize fat stores, will lower the respiratory quotient, while overfeeding, which causes lipogenesis, will increase it. Underfeeding is marked by a respiratory quotient below 0.85, while a respiratory quotient greater than 1.0 indicates overfeeding. This is particularly important in patients with compromised respiratory systems, as an increased respiratory quotient significantly corresponds to increased respiratory rate and decreased
tidal volume Tidal volume (symbol VT or TV) is the volume of air moved into or out of the lungs during a normal breath. In a healthy, young human adult, tidal volume is approximately 500 ml per inspiration or 7 ml/kg of body mass. Mechanical vent ...
, placing compromised patients at a significant risk. Because of its role in metabolism, respiratory quotient can be used in analysis of liver function and diagnosis of liver disease. In patients with
liver cirrhosis Cirrhosis, also known as liver cirrhosis or hepatic cirrhosis, and end-stage liver disease, is the impaired liver function caused by the formation of scar tissue known as fibrosis due to damage caused by liver disease. Damage causes tissue repai ...
, non-protein respiratory quotient (npRQ) values act as good indicators in the prediction of overall survival rate. Patients having a npRQ < 0.85 show considerably lower survival rates as compared to patients with a npRQ > 0.85. A decrease in npRQ corresponds to a decrease in glycogen storage by the liver. Similar research indicates that non-alcoholic fatty liver diseases are also accompanied by a low respiratory quotient value, and the non protein respiratory quotient value was a good indication of disease severity. Recently the respiratory quotient is also used from aquatic scientists to illuminate its environmental applications. Experimental studies with natural bacterioplankton using different single substrates suggested that RQ is linked to the elemental composition of the respired compounds. By this way, it is demonstrated that bacterioplankton RQ is not only a practical aspect of Bacterioplankton Respiration determination, but also a major ecosystem state variable that provides unique information about
aquatic ecosystem An aquatic ecosystem is an ecosystem formed by surrounding a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms that are dependent on each other and on their environment. The t ...
functioning. Based on the stoichiometry of the different metabolized substrates, the scientists can predict that
dissolved oxygen Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It ca ...
(O2) and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
(CO2) in aquatic ecosystems should covary inversely due to the processing of
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
and
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
. Using this quotient we could shed light on the metabolic behavior and the simultaneous roles of chemical and physical forcing that shape the
biogeochemistry Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, ...
of aquatic ecosystems.


Respiratory quotients of some substances

Telugu Academi, Botany text book, 2007 Version


See also

*


References


External links

{{authority control Biochemistry methods Energy conversion Metabolism Respiratory physiology Underwater diving physiology