Resolved sideband cooling
   HOME

TheInfoList



OR:

Resolved sideband cooling is a
laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) ...
technique allowing cooling of tightly bound atoms and ions beyond the
Doppler cooling limit Doppler cooling is a mechanism that can be used to trap and slow the motion of atoms to cool a substance. The term is sometimes used synonymously with laser cooling, though laser cooling includes other techniques. History Doppler cooling was s ...
, potentially to their motional
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have ...
and
quantum computing Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
.


Historical notes

As of the writing of this article, the scheme behind what we refer to as ''resolved sideband cooling'' today is attributed to D.J. Wineland and H. Dehmelt, in their article ‘‘Proposed 10^\delta\nu/\nu laser fluorescence spectroscopy on mono-ion oscillator III (sideband cooling).’’ The clarification is important as at the time of the latter article, the term also designated what we call today Doppler cooling, which was experimentally realized with atomic ion clouds in 1978 by W. Neuhauser and independently by D.J. Wineland. An experiment that demonstrates resolved sideband cooling unequivocally in its contemporary meaning is that of Diedrich et al. Similarly unequivocal realization with non-Rydberg neutral atoms was demonstrated in 1998 by S. E. Hamann et al. via Raman cooling.


Conceptual description

Resolved sideband cooling is a
laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) ...
technique that can be used to cool strongly trapped atoms to the quantum
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
of their motion. The atoms are usually precooled using the Doppler
laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) ...
. Subsequently, the resolved
sideband In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands ...
cooling is used to cool the atoms beyond the
Doppler cooling limit Doppler cooling is a mechanism that can be used to trap and slow the motion of atoms to cool a substance. The term is sometimes used synonymously with laser cooling, though laser cooling includes other techniques. History Doppler cooling was s ...
. A cold trapped atom can be treated to a good approximation as a
quantum mechanical Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive const ...
. If the spontaneous decay rate is much smaller than the vibrational frequency of the atom in the trap, the
energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
s of the system can be resolved as consisting of internal levels each corresponding to a ladder of vibrational states. Suppose a two-level atom whose ground state is shown by ''g'' and excited state by ''e''. Efficient laser cooling occurs when the frequency of the laser beam is tuned to the red sideband i.e. \omega = \omega_ - \nu, where \omega_ is the internal atomic transition frequency and \nu is the harmonic oscillation frequency of the atom. In this case the atom undergoes the transition \vert g, n \rangle \rightarrow \vert e, n-1 \rangle, where \vert a, m \rangle represents the state of an ion whose internal atomic state is ''a'' and the motional state is ''m''. This process is labeled '1' in the adjacent image. Subsequent
spontaneous emission Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount ...
occurs predominantly at the
carrier frequency In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an information-bearing signal for the purpose of conveying information. This carrier wave usually has a ...
if the recoil energy of the atom is negligible compared with the vibrational quantum energy i.e. \vert e, n-1 \rangle \rightarrow \vert g, n-1 \rangle. This process is labeled '2' in the adjacent image. The average effect of this mechanism is cooling the ion by one vibrational energy level. When these steps are repeated a sufficient number of times \vert g,0 \rangle is reached with a high probability.


Theoretical basis

The core process that provides the cooling assumes a two level system that is well localized compared to the wavelength (2\pi c/\omega_0) of the transition (Lamb-Dicke regime), such as a trapped and sufficiently cooled ion or atom. After, modeling the system as a harmonic oscillator interacting with a classical monochromatic electromagnetic field yields (in the rotating wave approximation) the Hamiltonian H = H_+H_ with H_ = \hbar\nu\left(n+\frac 1 2\right) H_ = -\hbar\Delta\left, e\right\rangle\left\langle e\+\hbar\frac \Omega 2 \left(\left, e\right\rangle\left\langle g\e^+\left, g\right\rangle\left\langle e\e^\right) and where n is the number operator \nu is the frequency spacing of the oscillator \Omega is the Rabi frequency due to the atom-light interaction \Delta is the laser detuning from \omega_0 \mathbf k is the laser wave vector That is, incidentally, the Jaynes-Cummings Hamiltonian used to describe the phenomenon of an atom coupled to a cavity in cavity QED. The absorption(emission) of photons by the atom is then governed by the off-diagonal elements, with probability of a transition between vibrational states m, n proportional to \left , \left\langle m\e^\left, n\right\rangle\right , ^2, and for each n there is a manifold, \, coupled to its neighbors with strength proportional to \left, \left\langle m\e^\left, n\right\rangle\. Three such manifolds are shown in the picture. If the \omega_0 transition linewidth \Gamma satisfies \Gamma\ll\nu, a sufficiently narrow laser can be tuned to a red sideband, \omega_0-q\nu, q\in\. For an atom starting at \left, g, n\right\rangle, the predominantly probable transition will be to \left, e, n-q\right\rangle. This process is depicted by arrow "1" in the picture. In the Lamb-Dicke regime, the spontaneously emitted photon (depicted by arrow "2") will be, on average, at frequency \omega_0, and the net effect of such a cycle, on average, will be the removing of q motional quanta. After some cycles, the average phonon number is \bar n = \frac , where R_q is the ratio of the intensities of the red to blue q−th sidebands. Repeating the processes many times while ensuring that spontaneous emission occurs provides cooling to \bar n \approx (\Gamma/\nu)^2\ll 1. More rigorous mathematical treatment is given in Turchette et al. and Wineland et al. Specific treatment of cooling multiple ions can be found in Morigi et al. An insightful approach to the details of cooling is given in Eschner et al., and was selectively followed above.


Experimental implementations

For resolved sideband cooling to be effective, the process needs to start at sufficiently low \bar n. To that end, the particle is usually first cooled to the Doppler limit, then some sideband cooling cycles are applied, and finally, a measurement is taken or state manipulation is carried out. A more or less direct application of this scheme was demonstrated by Diedrich et al. with the caveat that the narrow quadrupole transition used for cooling connects the ground state to a long-lived state, and the latter had to be pumped out to achieve optimal cooling efficiency. It is not uncommon, however, that additional steps are needed in the process, due to the atomic structure of the cooled species. Examples of that are the cooling of ions and the Raman sideband cooling of atoms.


Example: cooling of ions

The energy levels relevant to the cooling scheme for ions are the S1/2, P1/2, P3/2, D3/2, and D5/2, which are additionally split by a static magnetic field to their Zeeman manifolds. Doppler cooling is applied on the dipole S1/2 - P1/2 transition (397 nm), however, there is about 6% probability of spontaneous decay to the long-lived D3/2 state, so that state is simultaneously pumped out (at 866 nm) to improve Doppler cooling. Sideband cooling is performed on the narrow quadrupole transition S1/2 - D5/2 (729 nm), however, the long-lived D5/2 state needs to be pumped out to the short lived P3/2 state (at 854 nm) to recycle the ion to the ground S1/2 state and maintain cooling performance. One possible implementation was carried out by Leibfried et al. and a similar one is detailed by Roos. For each data point in the 729 nm absorption spectrum, a few hundred iterations of the following are executed: * the ion is Doppler cooled with 397 nm and 866 nm light, with 854 nm light on as well * the ion is spin polarized to the S1/2(m=-1/2) state by applying a \sigma^- 397 nm light for the last few moments of the Doppler cooling process * sideband cooling loops are applied at the first red sideband of the D5/2(m=-5/2) 729 nm transition * to ensure the population ends up in the S1/2(m=-1/2) state, another \sigma^- 397 nm pulse is applied * manipulation is carried out and analysis is carried out by applying 729 nm light at the frequency of interest * detection is carried out with 397 nm and 866 nm light: discrimination between dark (D) and bright (S) state is based on a pre-determined threshold value of fluorescence counts Variations of this scheme relaxing the requirements or improving the results are being investigated/used by several ion-trapping groups.


Example: Raman sideband cooling of atoms

A Raman transition replaces the one-photon transition used in the sideband above by a two-photon process via a virtual level. In the cooling experiment carried out by Hamann et al., trapping is provided by an isotropic optical lattice in a magnetic field, which also provides Raman coupling to the red sideband of the Zeeman manifolds. The process followed in is: * preparation of cold sample of 10^6 atoms is carried out in optical molasses, in a magneto-optic trap * atoms are allowed to occupy a 2D, near resonance lattice * the lattice is changed adiabatically to a far off resonance lattice, which leaves the sample sufficiently well cooled for sideband cooling to be effective ( Lamb-Dicke regime) * a magnetic field is turned on to tune the Raman coupling to the red motional sideband * relaxation between the hyperfine states is provided by a pump/repump laser pair * after some time, pumping is intensified to transfer the population to a specific hyperfine state * lattice is turned off and
time of flight Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a w ...
techniques are employed to perform Stern-Gerlach analysis


See also

*
Laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) ...
*
Amplitude modulation Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude (signal strength) of the wave is varied in proportion to ...


References

{{Lasers Laser applications Cooling technology Atomic physics Plasma physics