Renshaw cell
   HOME

TheInfoList



OR:

Renshaw cells are inhibitory
interneurons Interneurons (also called internuncial neurons, relay neurons, association neurons, connector neurons, intermediate neurons or local circuit neurons) are neurons that connect two brain regions, i.e. not direct motor neurons or sensory neurons. I ...
found in the
gray matter Grey matter is a major component of the central nervous system, consisting of neuronal cell bodies, neuropil (dendrites and unmyelinated axons), glial cells (astrocytes and oligodendrocytes), synapses, and capillaries. Grey matter is distingui ...
of the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
, and are associated in two ways with an
alpha motor neuron Alpha (α) motor neurons (also called alpha motoneurons), are large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate extrafusal muscle fibers of skeletal muscle and are directly responsible for initiating their co ...
. * They receive an excitatory collateral from the alpha neuron's axon as they emerge from the motor root, and are thus "kept informed" of how vigorously that neuron is firing. * They send an inhibitory axon to synapse with the cell body of the initial alpha neuron and/or an alpha motor neuron of the same motor pool. In this way, the Renshaw cell action represents a negative feedback mechanism. A Renshaw cell may be supplied by more than one alpha motor neuron collateral and it may synapse on multiple motor neurons.


Function

Although during embryonic development the Renshaw cells lack synapses from the dorsal root, prenatal and postnatal stages show the development of dorsal root originating synapses, which are functional and stimulate action potentials. But these decrease during development while acetylcholine motor axons begin to synapse and proliferate with Renshaw cells, ultimately being primarily stimulated by the motor neurons. The Renshaw cells are ultimately excited by multiple antidromic motor neuron axons, where the majority of axons originate from synergist motor neurons, and in turn the Renshaw cell synapses with multiple neurons, eliciting IPSP in alpha motor, 1a inhibitory interneurons and
gamma motor neurons A gamma motor neuron (γ motor neuron), also called gamma motoneuron, or fusimotor neuron, is a type of lower motor neuron that takes part in the process of muscle contraction, and represents about 30% of ( Aγ) fibers going to the muscle. Like ...
. The antidromic collateral circuit back to the triggering motor neuron is known as “recurrent inhibition”. This homonymous inhibition is not universal. Whereas most initial experiments have been done on cats, it has been found that in man that proximal muscles of the hand and foot do not have homonymous inhibition. Heteronymous inhibition has been found to be dominant in the leg compared to the arm, where antagonist muscles work simultaneously. (Renshaw cells are activated by gamma motor neurons, but to a lesser extent). The Renshaw cells not only synapse with homonymous and heteronymous nerves, but also with the Ia interneurones, which are stimulated by the Ia afferents from the same muscle group activated by the motor neurons, which have an inhibitory effect on the antagonist muscle group. This “recurrent facilitation” causes reduced inhibition of the reciprocal inhibition of the Ia interneuron of the antagonist group (Baret et al.; 2003), which may in turn also be inhibited by signals from the corticospinal tract. It has been shown that: * Recurrent inhibition is depressed during strong voluntary contractions (presumably due to inhibition of the Reshaw cell by descending input). * Renshaw cells are more inhibited at the same level during a dynamic contraction compared with sustained contraction. * Renshaw cells are facilitated during weak voluntary contractions. * Renshaw cells are facilitated during co-activation of antagonists. The Renshaw cells may also be inhibited by both proprioceptive dorsal root afferents], antidromic ventral axons as well as “descending” inhibition. The hyperpolarization of Renshaw cells by afferent and descending neurons have been shown to be caused by the release of
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
, but GABA may also hyperpolarize the Renshaw cell - for a prolonged time relative to glycine. It has also been shown that glycine is the inhibitory transmitter released by the Renshaw cells. In essence the Renshaw cells regulate the firing of the alpha motor neuron leaving the ventral horn. Conceptually they remove “noise” by dampening the firing frequency of over-excited neurons with a negative feedback loop, which prevents weakly excited alpha motor neurons from firing. Descending spinal cord nerves in turn regulate the Renshaw cells. The rate of discharge of the Renshaw cell is broadly proportional to the rate of discharge of the associated motor neuron(s), and the rate of discharge of the motor neuron(s) is broadly inversely proportional to the rate of discharge of the Renshaw cell(s). Renshaw cells thus act as "limiters," or "governors," on the alpha motor neuron system, thus helping to prevent muscular damage from
tetanus Tetanus, also known as lockjaw, is a bacterial infection caused by ''Clostridium tetani'', and is characterized by muscle spasms. In the most common type, the spasms begin in the jaw and then progress to the rest of the body. Each spasm usually ...
. Renshaw cells utilize the neurotransmitter
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
as an inhibitory substance that synapses on the alpha motor neurons.


Clinical significance

Renshaw cells are also the target of the toxin of ''
Clostridium tetani ''Clostridium tetani'' is a common soil bacterium and the causative agent of tetanus. Vegetative cells of ''Clostridium tetani'' are usually rod-shaped and up to 2.5 μm long, but they become enlarged and tennis racket- or drumstick-shaped wh ...
'', a Gram positive, spore-forming anaerobic bacterium that lives in the soil, and causes
tetanus Tetanus, also known as lockjaw, is a bacterial infection caused by ''Clostridium tetani'', and is characterized by muscle spasms. In the most common type, the spasms begin in the jaw and then progress to the rest of the body. Each spasm usually ...
. When wounds are contaminated with ''C. tetani'', the toxin travels to the spinal cord where it inhibits the release of
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
, an inhibitory neurotransmitter, from Renshaw cells. As a result, alpha motor neurons become hyperactive, and muscles constantly contract. Strychnine poison also specifically acts on these cell's ability to control alpha motor neuron firing by binding to the
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
receptors on the alpha motor neuron and thus muscles continually contract and may prove fatal if the diaphragm is involved.


History

The concept of the Renshaw cells was postulated by Birdsey Renshaw (1911–1948), when it was discovered that with antidromic signals from a motor neuron running collaterally back via the ventral root into the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
, there were interneurons firing with a high frequency, resulting in inhibition. Later work by Eccles ''et al.'', provided evidence that these interneurons, which they called “Renshaw Cells,” are stimulated by acetylcholine from motor neurons ( nicotinic receptor). Previous work by Renshaw and Lloyd Lloyd, D. P. C., After-currents, after-potentials, excitability, and ventral root electrotonus in spinal motoneurons, J.gen. Physiol..,1951,35 ,289 had shown that this antidromic inhibition resembled direct inhibition from spinal nerves but resulted in relatively longer inhibition of 40-50 ms (compared to 15 ms). The antidromic stimulation of the nerve fiber also resulted in
action potentials An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells ...
in the cell bodies of the motor neurons along with hyperpolarization of other groups of motor neurons. In the event where the initial stimulation of the motor neuron originated in a spinal tract the Renshaw cell spike occurred during the declining phase of the initial motor neuron soma spike giving an indication of the source and sequence of stimulation of the Renshaw cell.


References


External links


Diagram at pediatricneuro.com

NIF Search - Renshaw Cell
via the
Neuroscience Information Framework The Neuroscience Information Framework is a repository of global neuroscience web resources, including experimental, clinical, and translational neuroscience databases, knowledge bases, atlases, and genetic/genomic resources and provides many auth ...
{{DEFAULTSORT:Renshaw Cell Central nervous system neurons