Renal column
   HOME

TheInfoList



OR:

The kidneys are two reddish-brown bean-shaped
organs In biology, an organ is a collection of tissues joined in a structural unit to serve a common function. In the hierarchy of life, an organ lies between tissue and an organ system. Tissues are formed from same type cells to act together in a f ...
found in
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () (chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, with c ...
s. They are located on the left and right in the
retroperitoneal space The retroperitoneal space (retroperitoneum) is the anatomical space (sometimes a potential space) behind (''retro'') the peritoneum. It has no specific delineating anatomical structures. Organs are retroperitoneal if they have peritoneum on thei ...
, and in adult humans are about in length. They receive blood from the paired
renal arteries The renal arteries are paired arteries that supply the kidneys with blood. Each is directed across the crus of the diaphragm, so as to form nearly a right angle. The renal arteries carry a large portion of total blood flow to the kidneys. Up to a ...
; blood exits into the paired
renal vein The renal veins are large-calibre veins that drain blood filtered by the kidneys into the inferior vena cava. There is one renal vein draining each kidney. Because the inferior vena cava is on the right half of the body, the left renal vein is lo ...
s. Each kidney is attached to a
ureter The ureters are tubes made of smooth muscle that propel urine from the kidneys to the urinary bladder. In a human adult, the ureters are usually long and around in diameter. The ureter is lined by urothelial cells, a type of transitional epit ...
, a tube that carries excreted
urine Urine is a liquid by-product of metabolism in humans and in many other animals. Urine flows from the kidneys through the ureters to the urinary bladder. Urination results in urine being excreted from the body through the urethra. Cellular ...
to the
bladder The urinary bladder, or simply bladder, is a hollow organ in humans and other vertebrates that stores urine from the kidneys before disposal by urination. In humans the bladder is a distensible organ that sits on the pelvic floor. Urine enters ...
. The kidney participates in the control of the volume of various
body fluid Body fluids, bodily fluids, or biofluids, sometimes body liquids, are liquids within the human body. In lean healthy adult men, the total body water is about 60% (60–67%) of the total body weight; it is usually slightly lower in women (52-55% ...
s, fluid
osmolality Molality is a measure of the number of moles of solute in a solution corresponding to 1 kg or 1000 g of solvent. This contrasts with the definition of molarity which is based on a specified volume of solution. A commonly used unit for molali ...
, acid–base balance, various electrolyte concentrations, and removal of toxins. Filtration occurs in the
glomerulus ''Glomerulus'' () is a common term used in anatomy to describe globular structures of entwined vessels, fibers, or neurons. ''Glomerulus'' is the diminutive of the Latin ''glomus'', meaning "ball of yarn". ''Glomerulus'' may refer to: * the filter ...
: one-fifth of the blood volume that enters the kidneys is filtered. Examples of substances reabsorbed are solute-free
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
,
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
,
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial biochem ...
,
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, and
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s. Examples of substances secreted are
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, ammonium,
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
and
uric acid Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown ...
. The
nephron The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure ...
is the structural and functional unit of the kidney. Each adult human kidney contains around 1 million nephrons, while a mouse kidney contains only about 12,500 nephrons. The kidneys also carry out functions independent of the nephrons. For example, they convert a precursor of
vitamin D Vitamin D is a group of fat-soluble secosteroids responsible for increasing intestinal absorption of calcium, magnesium, and phosphate, and many other biological effects. In humans, the most important compounds in this group are vitamin D3 (c ...
to its active form,
calcitriol Calcitriol is the active form of vitamin D, normally made in the kidney. It is also known as 1,25-dihydroxycholecalciferol. It is a hormone which binds to and activates the vitamin D receptor in the nucleus of the cell, which then increases the ...
; and synthesize the
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are require ...
s erythropoietin and
renin Renin (etymology and pronunciation), also known as an angiotensinogenase, is an aspartic protease protein and enzyme secreted by the kidneys that participates in the body's renin–angiotensin–aldosterone system (RAAS)—also known as the r ...
. Chronic kidney disease (CKD) has been recognized as a leading public health problem worldwide. The global estimated prevalence of CKD is 13.4%, and patients with
kidney failure Kidney failure, also known as end-stage kidney disease, is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels. Kidney failure is classified as eit ...
needing
renal replacement therapy Renal replacement therapy (RRT) is therapy that replaces the normal blood-filtering function of the kidneys. It is used when the kidneys are not working well, which is called kidney failure and includes acute kidney injury and chronic kidney di ...
are estimated between 5 and 7 million. Procedures used in the management of kidney disease include chemical and microscopic examination of the urine (
urinalysis Urinalysis, a portmanteau of the words ''urine'' and ''analysis'', is a panel of medical tests that includes physical (macroscopic) examination of the urine, chemical evaluation using urine test strips, and microscopic examination. Macroscopic ...
), measurement of
kidney function Assessment of kidney function occurs in different ways, using the presence of symptoms and signs, as well as measurements using urine tests, blood tests, and medical imaging. Functions of a healthy kidney include maintaining a person's fluid ...
by calculating the estimated
glomerular filtration rate Renal functions include maintaining an acid–base balance; regulating fluid balance; regulating sodium, potassium, and other electrolytes; clearing toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pre ...
(eGFR) using the
serum creatinine Creatinine (; ) is a breakdown product of creatine phosphate from muscle and protein metabolism. It is released at a constant rate by the body (depending on muscle mass). Biological relevance Serum creatinine (a blood measurement) is an importa ...
; and
kidney biopsy Renal biopsy (also kidney biopsy) is a medical procedure in which a small piece of kidney is removed from the body for examination, usually under a microscope. Microscopic examination of the tissue can provide information needed to diagnose, moni ...
and CT scan to evaluate for abnormal anatomy. Dialysis and kidney transplantation are used to treat
kidney failure Kidney failure, also known as end-stage kidney disease, is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels. Kidney failure is classified as eit ...
; one (or both sequentially) of these are almost always used when renal function drops below 15%.
Nephrectomy A nephrectomy is the surgical removal of a kidney, performed to treat a number of kidney diseases including kidney cancer. It is also done to remove a normal healthy kidney from a living or deceased donor, which is part of a kidney transplant pr ...
is frequently used to cure
renal cell carcinoma Renal cell carcinoma (RCC) is a kidney cancer that originates in the lining of the Proximal tubule, proximal convoluted tubule, a part of the very small tubes in the kidney that transport primary urine. RCC is the most common type of kidney cance ...
.
Renal physiology Renal physiology (Latin ''rēnēs'', "kidneys") is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, ...
is the study of
kidney function Assessment of kidney function occurs in different ways, using the presence of symptoms and signs, as well as measurements using urine tests, blood tests, and medical imaging. Functions of a healthy kidney include maintaining a person's fluid ...
. Nephrology is the medical specialty which addresses diseases of kidney ''function'': these include CKD, nephritic and nephrotic syndromes,
acute kidney injury Acute kidney injury (AKI), previously called acute renal failure (ARF), is a sudden decrease in kidney function that develops within 7 days, as shown by an increase in serum creatinine or a decrease in urine output, or both. Causes of AKI are c ...
, and
pyelonephritis Pyelonephritis is inflammation of the kidney, typically due to a bacterial infection. Symptoms most often include fever and flank tenderness. Other symptoms may include nausea, burning with urination, and frequent urination. Complications may ...
.
Urology Urology (from Greek οὖρον ''ouron'' "urine" and '' -logia'' "study of"), also known as genitourinary surgery, is the branch of medicine that focuses on surgical and medical diseases of the urinary-tract system and the reproductive org ...
addresses diseases of kidney (and urinary tract) ''anatomy'': these include
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
,
renal cyst A renal cyst is a fluid collection in or on the kidney. There are several types based on the Bosniak classification. The majority are benign, simple cysts that can be monitored and not intervened upon. However, some are cancerous or are suspicio ...
s,
kidney stones Kidney stone disease, also known as nephrolithiasis or urolithiasis, is a crystallopathy where a calculus (medicine), solid piece of material (kidney stone) develops in the urinary tract. Kidney stones typically form in the kidney and leave the ...
and ureteral stones, and urinary tract obstruction. The word “renal” is an adjective meaning “relating to the kidneys”, and its roots are French or late Latin. Whereas according to some opinions, "renal" should be replaced with "kidney" in scientific writings such as "kidney artery", other experts have advocated preserving the use of renal as appropriate including in "renal artery".


Structure

In humans, the kidneys are located high in the abdominal cavity, one on each side of the vertebral column, spine, and lie in a retroperitoneal position at a slightly oblique angle. The asymmetry within the abdominal cavity, caused by the position of the liver, typically results in the right kidney being slightly lower and smaller than the left, and being placed slightly more to the middle than the left kidney. The left kidney is approximately at the vertebral level thoracic vertebrae, T12 to lumbar vertebrae, L3, and the right is slightly lower. The right kidney sits just below the thoracic diaphragm, diaphragm and posterior to the liver. The left kidney sits below the diaphragm and posterior to the spleen. On top of each kidney is an adrenal gland. The upper parts of the kidneys are partially protected by the 11th and 12th ribs. Each kidney, with its adrenal gland is surrounded by two layers of fat: the adipose capsule of kidney, perirenal fat present between renal fascia and renal capsule and pararenal fat superior to the renal fascia. The human kidney is a bean-shaped structure with a wikt:convex, convex and a wikt:concave, concave border. A recessed area on the concave border is the renal hilum, where the renal artery enters the kidney and the
renal vein The renal veins are large-calibre veins that drain blood filtered by the kidneys into the inferior vena cava. There is one renal vein draining each kidney. Because the inferior vena cava is on the right half of the body, the left renal vein is lo ...
and
ureter The ureters are tubes made of smooth muscle that propel urine from the kidneys to the urinary bladder. In a human adult, the ureters are usually long and around in diameter. The ureter is lined by urothelial cells, a type of transitional epit ...
leave. The kidney is surrounded by tough fibrous tissue, the renal capsule, which is itself surrounded by adipose capsule of kidney, perirenal fat, renal fascia, and pararenal fat. The anterior (front) surface of these tissues is the peritoneum, while the posterior (rear) surface is the transversalis fascia. The superior pole of the right kidney is adjacent to the liver. For the left kidney, it is next to the spleen. Both, therefore, move down upon inhalation. A Danish study measured the median renal length to be on the left side and on the right side in adults. Median renal volumes were on the left and on the right.


Gross anatomy

The functional substance, or Parenchyma#Renal parenchyma, parenchyma, of the human kidney is divided into two major structures: the outer renal cortex and the inner renal medulla. Grossly, these structures take the shape of eight to 18 cone-shaped renal lobes, each containing renal cortex surrounding a portion of medulla called a renal pyramid. Between the renal pyramids are projections of cortex called renal columns. Nephrons, the urine-producing functional structures of the kidney, span the cortex and medulla. The initial filtering portion of a nephron is the renal corpuscle, which is located in the cortex. This is followed by a renal tubule that passes from the cortex deep into the medullary pyramids. Part of the renal cortex, a medullary ray (anatomy), medullary ray is a collection of renal tubules that drain into a single collecting duct. The tip, or renal papilla, papilla, of each pyramid empties urine into a minor calyx; minor calyces empty into major calyces, and major calyces empty into the renal pelvis. This becomes the ureter. At the hilum, the ureter and renal vein exit the kidney and the renal artery enters. Hilar fat and lymphatic tissue with lymph nodes surround these structures. The hilar fat is contiguous with a fat-filled cavity called the renal sinus. The renal sinus collectively contains the renal pelvis and calyces and separates these structures from the renal medullary tissue. The kidneys possess no overtly moving structures. File:Right kidney seen on abdominal ultrasound.jpg, Normal adult right kidney as seen on abdominal ultrasound with a pole to pole measurement of 9.34 cm. File:CTscankidney.jpg, A CT scan of the abdomen showing the position of the kidneys. The left cross-section in the upper abdomen shows the liver on the left side of scan (right side of body). Center: cross-section showing the kidneys below the liver and spleen. Right: further cross-section through the left kidney. File:Slide42222.JPG, Image showing the structures that the kidney lies near. File:Left kidney.jpg, Cross-section through a cadaveric specimen showing the position of the kidneys.


Blood supply

The kidneys receive blood from the
renal arteries The renal arteries are paired arteries that supply the kidneys with blood. Each is directed across the crus of the diaphragm, so as to form nearly a right angle. The renal arteries carry a large portion of total blood flow to the kidneys. Up to a ...
, left and right, which branch directly from the abdominal aorta. The kidneys receive approximately 20–25% of cardiac output in adult human. Each renal artery branches into segmental arteries, dividing further into interlobar arteries, which penetrate the renal capsule and extend through the renal columns between the renal pyramids. The interlobar arteries then supply blood to the arcuate arteries that run through the boundary of the cortex and the medulla. Each arcuate artery supplies several interlobular arteries that feed into the afferent arterioles that supply the glomeruli. Blood drains from the kidneys, ultimately into the inferior vena cava. After filtration occurs, the blood moves through a small network of small veins (venules) that converge into interlobular veins. As with the arteriole distribution, the veins follow the same pattern: the interlobular provide blood to the arcuate veins then back to the interlobar veins, which come to form the
renal vein The renal veins are large-calibre veins that drain blood filtered by the kidneys into the inferior vena cava. There is one renal vein draining each kidney. Because the inferior vena cava is on the right half of the body, the left renal vein is lo ...
s which exit the kidney.


Nerve supply

The kidney and nervous system communicate via the renal plexus, whose fibers course along the renal arteries to reach each kidney. Input from the sympathetic nervous system triggers vasoconstriction in the kidney, thereby reducing renal blood flow. The kidney also receives input from the parasympathetic nervous system, by way of the renal branches of the vagus nerve; the function of this is yet unclear. Sensory input from the kidney travels to the T10-11 levels of the spinal cord and is sensed in the corresponding dermatome (anatomy), dermatome. Thus, pain in the flank region may be referred from corresponding kidney.


Microanatomy

Renal histology is the study of the microscopic structure of the kidney. Distinct cell types include: *Kidney glomerulus parietal cell *Kidney glomerulus podocyte *Kidney proximal tubule brush border cell *Loop of Henle thin segment cell *Thick ascending limb cell *Kidney distal tubule cell *Collecting duct system#Principal cell, Collecting duct principal cell *Collecting duct system#Intercalated cell, Collecting duct intercalated cell *Interstitial kidney cells


Gene and protein expression

In humans, about 20,000 protein coding genes are expressed in human cells and almost 70% of these genes are expressed in normal, adult kidneys. Just over 300 genes are more specifically expressed in the kidney, with only some 50 genes being highly specific for the kidney. Many of the corresponding kidney specific proteins are expressed in the cell membrane and function as transporter proteins. The highest expressed kidney specific protein is Tamm–Horsfall protein, uromodulin, the most abundant protein in urine with functions that prevent calcification and growth of bacteria. Specific proteins are expressed in the different compartments of the kidney with podocin and nephrin expressed in glomeruli, Solute carrier family protein SLC22A8 expressed in proximal tubules, calbindin expressed in distal tubules and aquaporin 2 expressed in the collecting duct cells.


Development

The mammalian kidney develops from intermediate mesoderm. Kidney development, also called ''nephrogenesis'', proceeds through a series of three successive developmental phases: the pronephros, mesonephros, and metanephros. The metanephros are primordia of the permanent kidney.


Function

The kidneys excrete a variety of waste products produced by metabolism into the urine. The microscopic structural and functional unit of the kidney is the
nephron The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure ...
. It processes the blood supplied to it via filtration, reabsorption, secretion and excretion; the consequence of those processes is the production of
urine Urine is a liquid by-product of metabolism in humans and in many other animals. Urine flows from the kidneys through the ureters to the urinary bladder. Urination results in urine being excreted from the body through the urethra. Cellular ...
. These include the nitrogenous wastes urea, from protein catabolism, and
uric acid Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown ...
, from nucleic acid metabolism. The ability of mammals and some birds to concentrate wastes into a volume of urine much smaller than the volume of blood from which the wastes were extracted is dependent on an elaborate countercurrent multiplication mechanism. This requires several independent nephron characteristics to operate: a tight hairpin configuration of the tubules, water and ion permeability in the descending limb of the loop, water impermeability in the ascending loop, and active ion transport out of most of the ascending limb. In addition, passive countercurrent exchange by the vessels carrying the blood supply to the nephron is essential for enabling this function. The kidney participates in whole-body homeostasis, regulating acid-base balance, acid–base balance, electrolyte concentrations, extracellular fluid volume, and blood pressure. The kidney accomplishes these homeostatic functions both independently and in concert with other organs, particularly those of the endocrine system. Various endocrine hormones coordinate these endocrine functions; these include
renin Renin (etymology and pronunciation), also known as an angiotensinogenase, is an aspartic protease protein and enzyme secreted by the kidneys that participates in the body's renin–angiotensin–aldosterone system (RAAS)—also known as the r ...
, angiotensin II, aldosterone, antidiuretic hormone, and atrial natriuretic peptide, among others.


Formation of urine


Filtration

Filtration, which takes place at the renal corpuscle, is the process by which cells and large proteins are retained while materials of smaller molecular weights are filtered from the blood to make an Ultrafiltration (kidney), ultrafiltrate that eventually becomes urine. The adult human kidney generates approximately 180 liters of filtrate a day. The normal range for a twenty four hour urine volume collection is 800 to 2,000 milliliters per day. The process is also known as hydrostatic filtration due to the hydrostatic pressure exerted on the capillary walls.


Reabsorption

Reabsorption is the transport of molecules from this ultrafiltrate and into the peritubular capillary. It is accomplished via selective Cell surface receptor, receptors on the luminal cell membrane. Water is 55% reabsorbed in the proximal tubule. Glucose at normal plasma levels is completely reabsorbed in the proximal tubule. The mechanism for this is the Na+/glucose cotransporter. A plasma level of 350 mg/dL will fully saturate the transporters and glucose will be lost in the urine. A plasma glucose level of approximately 160 is sufficient to allow glucosuria, which is an important clinical clue to diabetes mellitus. Amino acids are reabsorbed by sodium dependent transporters in the proximal tubule. Hartnup disease is a deficiency of the tryptophan amino acid transporter, which results in pellagra.Le, Tao. ''First Aid for the USMLE Step 1'' 2013. New York: McGraw-Hill Medical, 2013. Print.


Secretion

Secretion is the reverse of reabsorption: molecules are transported from the peritubular capillary through the interstitial fluid, then through the renal tubular cell and into the ultrafiltrate.


Excretion

The last step in the processing of the ultrafiltrate is ''excretion'': the ultrafiltrate passes out of the nephron and travels through a tube called the ''collecting duct'', which is part of the collecting duct system, and then to the ureters where it is renamed ''urine''. In addition to transporting the ultrafiltrate, the collecting duct also takes part in reabsorption.


Hormone secretion

The kidneys secrete a variety of hormones, including erythropoietin,
calcitriol Calcitriol is the active form of vitamin D, normally made in the kidney. It is also known as 1,25-dihydroxycholecalciferol. It is a hormone which binds to and activates the vitamin D receptor in the nucleus of the cell, which then increases the ...
, and
renin Renin (etymology and pronunciation), also known as an angiotensinogenase, is an aspartic protease protein and enzyme secreted by the kidneys that participates in the body's renin–angiotensin–aldosterone system (RAAS)—also known as the r ...
. Erythropoietin is released in response to Hypoxia (medical), hypoxia (low levels of oxygen at tissue level) in the renal circulation. It stimulates erythropoiesis (production of red blood cells) in the bone marrow. Calcitriol, the activated form of
vitamin D Vitamin D is a group of fat-soluble secosteroids responsible for increasing intestinal absorption of calcium, magnesium, and phosphate, and many other biological effects. In humans, the most important compounds in this group are vitamin D3 (c ...
, promotes intestinal absorption of calcium and the renal reabsorption of phosphate. Renin is an enzyme which regulates angiotensin and aldosterone levels.


Blood pressure regulation

Although the kidney cannot directly sense blood, long-term regulation of blood pressure predominantly depends upon the kidney. This primarily occurs through maintenance of the extracellular fluid compartment, the size of which depends on the plasma
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
concentration. Renin is the first in a series of important chemical messengers that make up the renin–angiotensin system. Changes in renin ultimately alter the output of this system, principally the hormones angiotensin II and aldosterone. Each hormone acts via multiple mechanisms, but both increase the kidney's absorption of sodium chloride, thereby expanding the extracellular fluid compartment and raising blood pressure. When renin levels are elevated, the concentrations of angiotensin II and aldosterone increase, leading to increased sodium chloride reabsorption, expansion of the extracellular fluid compartment, and an increase in blood pressure. Conversely, when renin levels are low, angiotensin II and aldosterone levels decrease, contracting the extracellular fluid compartment, and decreasing blood pressure.


Acid–base balance

The two organ systems that help regulate the body's acid-base balance are the kidneys and lungs. Acid–base homeostasis is the maintenance of pH around a value of 7.4. The lungs are part of respiratory system which helps to maintain acid–base homeostasis by regulating carbon dioxide (CO2) concentration in the blood. The respiratory system is the first line of defense when the body experiences and acid-base problem. It attempts to return the body pH to a value of 7.4 by controlling the respiratory rate. When the body is experiencing acidic conditions, it will increase the respiratory rate which in turn drives off CO2 and decreases the H+ concentration, therefore increasing the pH. In basic conditions, the respiratory rate will slow down so that the body holds onto more CO2 and increases the H+ concentration and decreases the pH[1]. The kidneys have two cells that help to maintain acid-base homeostasis: intercalated A and B cells. The intercalated A cells are stimulated when the body is experiencing acidic conditions. Under acidic conditions, the high concentration of CO2 in the blood creates a gradient for CO2 to move into the cell and push the reaction HCO3 + H <--> H2CO3 <--> CO2 + H2O to the left. On the luminal side of the cell there is a H+ pump and a H/K exchanger. These pumps move H+ against their gradient and therefore require ATP. These cells will remove H+ from the blood and move it to the filtrate which helps to increase the pH of the blood. On the basal side of the cell there is a HCO3/Cl exchanger and a Cl/K co-transporter (facilitated diffusion). When the reaction is pushed to the left it also increases the HCO3 concentration in the cell and HCO3 is then able to move out into the blood which additionally raises the pH. The intercalated B cell responds very similarly, however, the membrane proteins are flipped from the intercalated A cells: the proton pumps are on the basal side and the HCO3/Cl exchanger and K/Cl co-transporter are on the luminal side. They function the same, but now release protons into the blood to decrease the pH[1].


Regulation of osmolality

The kidneys help maintain the water and salt level of the body. Any significant rise in plasma osmolality is detected by the hypothalamus, which communicates directly with the posterior pituitary gland. An increase in osmolality causes the gland to secrete antidiuretic hormone (ADH), resulting in water reabsorption by the kidney and an increase in urine concentration. The two factors work together to return the plasma osmolality to its normal levels.


Measuring function

Various calculations and methods are used to try to measure kidney function. Renal clearance is the volume of plasma from which the substance is completely cleared from the blood per unit time. The filtration fraction is the amount of plasma that is actually filtered through the kidney. This can be defined using the equation. The kidney is a very complex organ and mathematical modelling has been used to better understand kidney function at several scales, including fluid uptake and secretion.


Clinical significance

Nephrology is the subspeciality under Internal Medicine that deals with kidney function and disease states related to renal malfunction and their management including Kidney dialysis, dialysis and kidney Organ transplantation, transplantation.
Urology Urology (from Greek οὖρον ''ouron'' "urine" and '' -logia'' "study of"), also known as genitourinary surgery, is the branch of medicine that focuses on surgical and medical diseases of the urinary-tract system and the reproductive org ...
is the specialty under Surgery that deals with kidney structure abnormalities such as kidney cancer and cysts and problems with urinary tract. Nephrologists are internists, and urologists are surgeons, whereas both are often called "kidney doctors". There are overlapping areas that both nephrologists and urologists can provide care such as
kidney stones Kidney stone disease, also known as nephrolithiasis or urolithiasis, is a crystallopathy where a calculus (medicine), solid piece of material (kidney stone) develops in the urinary tract. Kidney stones typically form in the kidney and leave the ...
and kidney related infections. There are many causes of kidney disease. Some causes are acquired over the course of life, such as diabetic nephropathy whereas others are congenital, such as polycystic kidney disease. Medical terms related to the kidneys commonly use terms such as ''renal'' and the prefix ''nephro-''. The adjective ''renal'', meaning related to the kidney, is from the Latin language, Latin ''rēnēs'', meaning kidneys; the prefix ''nephro-'' is from the Ancient Greek word for kidney, ''nephros (νεφρός)''. For example, surgical removal of the kidney is a ''nephrectomy'', while a reduction in kidney function is called ''renal dysfunction''.


Acquired

*Diabetic nephropathy *Glomerulonephritis *Hydronephrosis is the enlargement of one or both of the kidneys caused by obstruction of the flow of urine. *Interstitial nephritis *Kidney stones (nephrolithiasis) are a relatively common and particularly painful disorder. A chronic condition can result in scars to the kidneys. The removal of kidney stones involves ultrasound treatment to break up the stones into smaller pieces, which are then passed through the urinary tract. One common symptom of kidney stones is a sharp to disabling pain in the middle and sides of the lower back or groin. *Kidney tumour **Wilms tumor **Renal cell carcinoma *Lupus nephritis *Minimal change disease *In nephrotic syndrome, the
glomerulus ''Glomerulus'' () is a common term used in anatomy to describe globular structures of entwined vessels, fibers, or neurons. ''Glomerulus'' is the diminutive of the Latin ''glomus'', meaning "ball of yarn". ''Glomerulus'' may refer to: * the filter ...
has been damaged so that a large amount of protein in the blood enters the
urine Urine is a liquid by-product of metabolism in humans and in many other animals. Urine flows from the kidneys through the ureters to the urinary bladder. Urination results in urine being excreted from the body through the urethra. Cellular ...
. Other frequent features of the nephrotic syndrome include swelling, low serum albumin, and high cholesterol. *Pyelonephritis is infection of the kidneys and is frequently caused by complication of a urinary tract infection. *Kidney failure ** Acute kidney failure ** Chronic kidney disease, Stage 5 Chronic Kidney Disease * Renal artery stenosis * Renovascular hypertension


Kidney injury and failure

Generally, humans can live normally with just one kidney, as one has more functioning renal tissue than is needed to survive. Only when the amount of functioning kidney tissue is greatly diminished does one develop chronic kidney disease. Renal replacement therapy, in the form of Kidney dialysis, dialysis or kidney transplantation, is indicated when the
glomerular filtration rate Renal functions include maintaining an acid–base balance; regulating fluid balance; regulating sodium, potassium, and other electrolytes; clearing toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pre ...
has fallen very low or if the renal dysfunction leads to severe symptoms.


Dialysis

Dialysis is a treatment that substitutes for the function of normal kidneys. Dialysis may be instituted when approximately 85%-90% of kidney function is lost, as indicated by a glomerular filtration rate (GFR) of less than 15. Dialysis removes metabolic waste products as well as excess water and sodium (thereby contributing to regulating blood pressure); and maintains many chemical levels within the body. Life expectancy is 5–10 years for those on dialysis; some live up to 30 years. Dialysis can occur via the blood (through a central venous catheter, catheter or arteriovenous fistula), or through the peritoneum (peritoneal dialysis) Dialysis is typically administered three times a week for several hours at free-standing dialysis centers, allowing recipients to lead an otherwise essentially normal life.


Congenital disease

*Congenital hydronephrosis *Congenital obstruction of urinary tract *Duplex kidneys, or double kidneys, occur in approximately 1% of the population. This occurrence normally causes no complications, but can occasionally cause urinary tract infections. *Duplicated ureter occurs in approximately one in 100 live births *Horseshoe kidney occurs in approximately one in 400 live births *Nephroblastoma (Syndromic Wilm's tumour) * Nutcracker syndrome *Polycystic kidney disease **Autosomal dominant polycystic kidney disease affects patients later in life. Approximately one in 1000 people will develop this condition **Autosomal recessive polycystic kidney disease is far less common, but more severe, than the dominant condition. It is apparent ''in utero'' or at birth. *Renal agenesis. Failure of one kidney to form occurs in approximately one in 750 live births. Failure of both kidneys to form used to be fatal; however, medical advances such as amnioinfusion therapy during pregnancy and peritoneal dialysis have made it possible to stay alive until a transplant can occur. *Renal dysplasia *Unilateral small kidney *Multicystic dysplastic kidney occurs in approximately one in every 2400 live births *Ureteropelvic Junction Obstruction or UPJO; although most cases are congenital, some are acquired.


Diagnosis

Many renal diseases are diagnosed on the basis of a detailed medical history, and physical examination. The medical history takes into account present and past symptoms, especially those of kidney disease; recent infections; exposure to substances toxic to the kidney; and family history of kidney disease. Renal function, Kidney function is tested by using blood tests and Clinical urine tests, urine tests. The most common blood tests are creatinine, urea and electrolytes. Urine tests such as
urinalysis Urinalysis, a portmanteau of the words ''urine'' and ''analysis'', is a panel of medical tests that includes physical (macroscopic) examination of the urine, chemical evaluation using urine test strips, and microscopic examination. Macroscopic ...
can evaluate for pH, protein, glucose, and the presence of blood. Microscopic analysis can also identify the presence of urinary casts and crystals. The
glomerular filtration rate Renal functions include maintaining an acid–base balance; regulating fluid balance; regulating sodium, potassium, and other electrolytes; clearing toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pre ...
(GFR) can be directly measured ("measured GFR", or mGFR) but this rarely done in everyday practice. Instead, special equations are used to calculate GFR ("estimated GFR", or eGFR).


Imaging

Renal ultrasonography is essential in the diagnosis and management of kidney-related diseases.Content initially copied from:
(CC-BY 4.0)
Other modalities, such as CT scan, CT and magnetic resonance imaging, MRI, should always be considered as supplementary imaging modalities in the assessment of renal disease.


Biopsy

The role of the renal biopsy is to diagnose renal disease in which the etiology is not clear based upon noninvasive means (clinical history, past medical history, medication history, physical exam, laboratory studies, imaging studies). In general, a renal pathologist will perform a detailed morphological evaluation and integrate the morphologic findings with the clinical history and laboratory data, ultimately arriving at a pathological diagnosis. A renal pathologist is a physician who has undergone general training in anatomic pathology and additional specially training in the interpretation of renal biopsy specimens. Ideally, multiple core sections are obtained and evaluated for adequacy (presence of glomeruli) intraoperatively. A pathologist/pathology assistant divides the specimen(s) for submission for light microscopy, immunofluorescence microscopy and electron microscopy. The pathologist will examine the specimen using light microscopy with multiple staining techniques (hematoxylin and eosin/H&E, PAS, trichrome, silver stain) on multiple level sections. Multiple immunofluorescence stains are performed to evaluate for antibody, protein and complement deposition. Finally, ultra-structural examination is performed with electron microscopy and may reveal the presence of electron-dense deposits or other characteristic abnormalities that may suggest an etiology for the patient's renal disease.


Other animals

In the majority of vertebrates, the mesonephros persists into the adult, albeit usually fused with the more advanced metanephros; only in amniotes is the mesonephros restricted to the embryo. The kidneys of fish and amphibians are typically narrow, elongated organs, occupying a significant portion of the trunk. The collecting ducts from each cluster of nephrons usually drain into an ''archinephric duct'', which is homology (biology), homologous with the vas deferens of amniotes. However, the situation is not always so simple; in cartilaginous fish and some amphibians, there is also a shorter duct, similar to the amniote ureter, which drains the posterior (metanephric) parts of the kidney, and joins with the archinephric duct at the bladder or cloaca. Indeed, in many cartilaginous fish, the anterior portion of the kidney may degenerate or cease to function altogether in the adult. In the most primitive vertebrates, the hagfish and lampreys, the kidney is unusually simple: it consists of a row of nephrons, each emptying directly into the archinephric duct. Invertebrates may possess excretory organs that are sometimes referred to as "kidneys", but, even in ''Amphioxus'', these are never homologous with the kidneys of vertebrates, and are more accurately referred to by other names, such as nephridia. In amphibians, kidneys and the urinary bladder harbour specialized parasites, monogeneans of the family Polystomatidae. The kidneys of reptiles consist of a number of lobules arranged in a broadly linear pattern. Each lobule contains a single branch of the ureter in its centre, into which the collecting ducts empty. Reptiles have relatively few nephrons compared with other amniotes of a similar size, possibly because of their lower metabolic rate. Birds have relatively large, elongated kidneys, each of which is divided into three or more distinct lobes. The lobes consists of several small, irregularly arranged, lobules, each centred on a branch of the ureter. Birds have small glomeruli, but about twice as many nephrons as similarly sized mammals. The human kidney is fairly typical of that of mammals. Distinctive features of the mammalian kidney, in comparison with that of other vertebrates, include the presence of the renal pelvis and renal pyramids and a clearly distinguishable cortex and medulla. The latter feature is due to the presence of elongated Loop of Henle, loops of Henle; these are much shorter in birds, and not truly present in other vertebrates (although the nephron often has a short ''intermediate segment'' between the convoluted tubules). It is only in mammals that the kidney takes on its classical "kidney" shape, although there are some exceptions, such as the multilobed reniculate kidneys of pinnipeds and cetaceans.


Evolutionary adaptation

Kidneys of various animals show evidence of evolutionary adaptation and have long been studied in ecophysiology and comparative physiology. Kidney morphology, often indexed as the relative medullary thickness, is associated with habitat aridity among species of mammals and diet (e.g., carnivores have only long loops of Henle).


Society and culture


Significance


Egyptian

In ancient Egypt, the kidneys, like the heart, were left inside the mummified bodies, unlike other organs which were removed. Comparing this to the biblical statements, and to drawings of human body with the heart and two kidneys portraying a set of scales for weighing justice, it seems that the Egyptian beliefs had also connected the kidneys with judgement and perhaps with moral decisions.


Hebrew

According to studies in modern and ancient Hebrew, various body organs in humans and animals served also an emotional or logical role, today mostly attributed to the brain and the endocrine system. The kidney is mentioned in several biblical verses in conjunction with the heart, much as the bowels were understood to be the "seat" of emotion – grief, joy and pain. Similarly, the Talmud (''Berakhoth'' 61.a) states that one of the two kidneys counsels what is good, and the other evil. In the sacrifices offered at the biblical Tabernacle and later on at the temple in Jerusalem, the priests were instructed to remove the kidneys and the adrenal gland covering the kidneys of the sheep, goat and cattle offerings, and to burn them on the altar, as the holy part of the "offering for God" never to be eaten.


India: Ayurvedic system

In ancient India, according to the Ayurveda, Ayurvedic medical systems, the kidneys were considered the beginning of the excursion channels system, the 'head' of the ''Mutra Srota''s, receiving from all other systems, and therefore important in determining a person's health balance and temperament by the balance and mixture of the three 'Dosha's – the three health elements: Vatha (or Vata) – air, Pitta – bile, and Kapha – mucus. The temperament and health of a person can then be seen in the resulting color of the urine. Modern Ayurveda practitioners, a practice which is characterized as pseudoscience, have attempted to revive these methods in medical procedures as part of Ayurveda Urine therapy. These procedures have been called "nonsensical" by skeptics.


Medieval Christianity

The Latin term ''renes'' is related to the English word "reins", a synonym for the kidneys in Shakespearean English (e.g. ''Merry Wives of Windsor'' 3.5), which was also the time when the King James Version of the Bible was translated. Kidneys were once popularly regarded as the seat of the conscience and reflection, and a number of verses in the Bible (e.g. Ps. 7:9, Rev. 2:23) state that God searches out and inspects the kidneys, or "reins", of humans, together with the heart.


As food

The kidneys, like other offal, can be cooking, cooked and eaten. Kidneys are usually grilled or sautéed, but in more complex dishes they are stewed with a sauce that will improve their flavor. In many preparations, kidneys are combined with pieces of meat or liver, as in mixed grill. Dishes include the British cuisine, British steak and kidney pie, the Swedish cuisine, Swedish ''hökarpanna'' (pork and kidney stew), the French cuisine, French ''rognons de veau sauce moutarde'' (veal kidneys in mustard (condiment), mustard sauce) and the Spanish cuisine, Spanish ''riñones al Jerez'' (kidneys stewed in sherry sauce) .


History

Kidney stones have been identified and recorded about as long as written historical records exist. The urinary tract including the ureters, as well as their function to drain urine from the kidneys, has been described by Galen in the second century AD. The first to examine the ureter through an internal approach, called ureteroscopy, rather than surgery was Hampton Young in 1929. This was improved on by VF Marshall who is the first published use of a flexible endoscope based on fiber optics, which occurred in 1964. The insertion of a drainage tube into the renal pelvis, bypassing the uterers and urinary tract, called nephrostomy, was first described in 1941. Such an approach differed greatly from the open surgery, open surgical approaches within the urinary system employed during the preceding two millennia.


Additional images

File:Slide4nn.JPG, Right Kidney File:Slide5pp.JPG, Kidney File:Slide3ppp.JPG, Right Kidney File:Right kidney.jpg, Right kidney File:Left kidneys.jpg, Left kidney File:Kidneys.jpg, Kidneys File:Left kidney.jpg, Left kidney


See also

*Artificial kidney *Holonephros *Nephromegaly *Organ donation *Organ harvesting *Pelvic kidney *World Kidney Day


References


Citations


General and cited references

*


External links


Kidney at the Human Protein Atlas


{{Authority control Kidney, Endocrine system