Regional metamorphism
   HOME

TheInfoList



OR:

Metamorphism is the transformation of existing rock (the
protolith A protolith () is the original, unmetamorphosed rock from which a given metamorphic rock is formed. For example, the protolith of a slate is a shale or mudstone. Metamorphic rocks can be derived from any other kind of non-metamorphic rock an ...
) to rock with a different
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
composition or texture. Metamorphism takes place at temperatures in excess of , and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from
weathering Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs '' in situ'' (on site, with little or no movement ...
or diagenesis, which are changes that take place at or just beneath Earth's surface. Various forms of metamorphism exist, including regional,
contact Contact may refer to: Interaction Physical interaction * Contact (geology), a common geological feature * Contact lens or contact, a lens placed on the eye * Contact sport, a sport in which players make contact with other players or objects * C ...
, hydrothermal, shock, and dynamic metamorphism. These differ in the characteristic temperatures, pressures, and rate at which they take place and in the extent to which reactive fluids are involved. Metamorphism occurring at increasing pressure and temperature conditions is known as ''prograde metamorphism'', while decreasing temperature and pressure characterize ''retrograde metamorphism''. Metamorphic petrology is the study of metamorphism. Metamorphic petrologists rely heavily on statistical mechanics and
experimental petrology Experimental petrology is the field of research concerned with experimentally determining the physical and chemical behavior of rocks and their constituents. Because there is no way to directly observe or measure deep earth processes, geochemist ...
to understand metamorphic processes.


Metamorphic processes

Metamorphism is the set of processes by which existing rock is transformed physically or chemically at elevated temperature, without actually melting to any great degree. The importance of heating in the formation of
metamorphic rock Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, caus ...
was first recognized by the pioneering Scottish naturalist, James Hutton, who is often described as the father of modern geology. Hutton wrote in 1795 that some rock beds of the Scottish Highlands had originally been
sedimentary rock Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
, but had been transformed by great heat. Hutton also speculated that pressure was important in metamorphism. This hypothesis was tested by his friend, James Hall, who sealed
chalk Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. C ...
into a makeshift pressure vessel constructed from a cannon barrel and heated it in an iron foundry furnace. Hall found that this produced a material strongly resembling marble, rather than the usual quicklime produced by heating of chalk in the open air. French geologists subsequently added metasomatism, the circulation of fluids through buried rock, to the list of processes that help bring about metamorphism. However, metamorphism can take place without metasomatism (isochemical metamorphism) or at depths of just a few hundred meters where pressures are relatively low (for example, in contact metamorphism). Rock can be transformed without melting because heat causes atomic bonds to break, freeing the atoms to move and form new bonds with other
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s. Pore fluid present between mineral grains is an important medium through which atoms are exchanged. This permits recrystallization of existing minerals or crystallization of new minerals with different crystalline structures or chemical compositions ( neocrystallization). The transformation converts the minerals in the protolith into forms that are more stable (closer to
chemical equilibrium In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the ...
) under the conditions of pressure and temperature at which metamorphism takes place. Metamorphism is generally regarded to begin at temperatures of . This excludes diagenetic changes due to compaction and lithification, which result in the formation of sedimentary rocks. The upper boundary of metamorphic conditions lies at the solidus of the rock, which is the temperature at which the rock begins to melt. At this point, the process becomes an igneous process. The solidus temperature depends on the composition of the rock, the pressure, and whether the rock is saturated with water. Typical solidus temperatures range from for wet granite at a few hundred
megapascal The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI), and is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is defined ...
s (Mpa) of pressure to about for wet basalt at atmospheric pressure. Migmatites are rocks formed at this upper limit, which contains pods and veins of material that has started to melt but has not fully segregated from the refractory residue. The metamorphic process can occur at almost any pressure, from near surface pressure (for contact metamorphism) to pressures in excess of 16 kbar (1500 Mpa).


Recrystallization

The change in the grain size and orientation in the rock during the process of metamorphism is called recrystallization. For instance, the small calcite crystals in the sedimentary rocks
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms w ...
and
chalk Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. C ...
change into larger crystals in the metamorphic rock marble. In metamorphosed
sandstone Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicat ...
, recrystallization of the original
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical f ...
sand grains results in very compact
quartzite Quartzite is a hard, non- foliated metamorphic rock which was originally pure quartz sandstone.Essentials of Geology, 3rd Edition, Stephen Marshak, p 182 Sandstone is converted into quartzite through heating and pressure usually related to tec ...
, also known as metaquartzite, in which the often larger quartz crystals are interlocked. Both high temperatures and pressures contribute to recrystallization. High temperatures allow the
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s and ions in solid crystals to migrate, thus reorganizing the crystals, while high pressures cause solution of the crystals within the rock at their points of contact ('' pressure solution'') and redeposition in pore space. During recrystallization, the identity of the mineral does not change, only its texture. Recrystallization generally begins when temperatures reach above half the melting point of the mineral on the
Kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
scale. Pressure solution begins during diagenesis (the process of lithification of sediments into sedimentary rock) but is completed during early stages of metamorphism. For a sandstone protolith, the dividing line between diagenesis and metamorphism can be placed at the point where strained quartz grains begin to be replaced by new, unstrained, small quartz grains, producing a ''mortar texture'' that can be identified in thin sections under a polarizing microscope. With increasing grade of metamorphism, further recrystallization produces ''foam texture'', characterized by polygonal grains meeting at triple junctions, and then ''porphyroblastic texture'', characterized by coarse, irregular grains, including some larger grains ( porphyroblasts.) Metamorphic rocks are typically more coarsely crystalline than the protolith from which they formed. Atoms in the interior of a crystal are surrounded by a stable arrangement of neighboring atoms. This is partially missing at the surface of the crystal, producing a '' surface energy'' that makes the surface thermodynamically unstable. Recrystallization to coarser crystals reduces the surface area and so minimizes the surface energy. Although grain coarsening is a common result of metamorphism, rock that is intensely deformed may eliminate strain energy by recrystallizing as a fine-grained rock called '' mylonite''. Certain kinds of rock, such as those rich in quartz,
carbonate mineral Carbonate minerals are those minerals containing the carbonate ion, . Carbonate divisions Anhydrous carbonates *Calcite group: trigonal ** Calcite CaCO3 ** Gaspéite (Ni,Mg,Fe2+)CO3 ** Magnesite MgCO3 **Otavite CdCO3 ** Rhodochrosite MnCO3 ...
s, or olivine, are particularly prone to form mylonites, while feldspar and garnet are resistant to mylonitization.


Phase change

Phase change metamorphism is the creating of a new mineral with the same chemical formula as a mineral of the protolith. This involves a rearrangement of the atoms in the crystals. An example is provided by the aluminium silicate minerals, kyanite, andalusite, and sillimanite. All three have the identical composition, . Kyanite is stable at surface conditions. However, at atmospheric pressure, kyanite transforms to andalusite at a temperature of about . Andalusite, in turn, transforms to sillimanite when the temperature reaches about . At pressures above about 4 kbar (400 Mpa), kyanite transforms directly to sillimanite as the temperature increases. A similar phase change is sometimes seen between calcite and aragonite, with calcite transforming to aragonite at elevated pressure and relatively low temperature.


Neocrystallization

Neocrystallization involves the creation of new mineral crystals different from the protolith.
Chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking ...
s digest the minerals of the protolith which yields new minerals. This is a very slow process as it can also involve the diffusion of atoms through solid crystals. An example of a neocrystallization reaction is the reaction of fayalite with
plagioclase Plagioclase is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more p ...
at elevated pressure and temperature to form
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different ...
. The reaction is: Many complex high-temperature reactions may take place between minerals without them melting, and each mineral assemblage produced provides us with a clue as to the temperatures and pressures at the time of metamorphism. These reactions are possible because of rapid diffusion of atoms at elevated temperature. Pore fluid between mineral grains can be an important medium through which atoms are exchanged. A particularly important group of neocrystallization reactions are those that release volatiles such as water and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
. During metamorphism of
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
to eclogite in subduction zones, hydrous minerals break down, producing copious quantities of water. The water rises into the overlying mantle, where it lowers the melting temperature of the mantle rock, generating
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natura ...
via flux melting. The mantle-derived magmas can ultimately reach the Earth's surface, resulting in volcanic eruptions. The resulting arc volcanoes tend to produce dangerous eruptions, because their high water content makes them extremely explosive. Examples of ''dehydration reactions'' that release water include: An example of a decarbonation reaction is:


Plastic deformation

In plastic deformation pressure is applied to the
protolith A protolith () is the original, unmetamorphosed rock from which a given metamorphic rock is formed. For example, the protolith of a slate is a shale or mudstone. Metamorphic rocks can be derived from any other kind of non-metamorphic rock an ...
, which causes it to shear or bend, but not break. In order for this to happen temperatures must be high enough that brittle fractures do not occur, but not so high that diffusion of crystals takes place. As with pressure solution, the early stages of plastic deformation begin during diagenesis.


Types


Regional

''Regional metamorphism'' is a general term for metamorphism that affects entire regions of the Earth's crust. It most often refers to ''dynamothermal metamorphism'', which takes place in '' orogenic belts'' (regions where
mountain building Mountain formation refers to the geological processes that underlie the formation of mountains. These processes are associated with large-scale movements of the Earth's crust (tectonic plates). Folding, faulting, volcanic activity, igneous intr ...
is taking place), but also includes ''burial metamorphism'', which results simply from rock being buried to great depths below the Earth's surface in a subsiding basin.


Dynamothermal

To many geologists, regional metamorphism is practically synonymous with dynamothermal metamorphism. This form of metamorphism takes place at convergent plate boundaries, where two
continental plates Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large te ...
or a continental plate and an island arc collide. The collision zone becomes a belt of mountain formation called an '' orogeny''. The orogenic belt is characterized by thickening of the Earth's crust, during which the deeply buried crustal rock is subjected to high temperatures and pressures and is intensely deformed. Subsequent
erosion Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is d ...
of the mountains exposes the roots of the orogenic belt as extensive outcrops of metamorphic rock, characteristic of mountain chains. Metamorphic rock formed in these settings tends to shown well-developed foliation. Foliation develops when a rock is being shortened along one axis during metamorphism. This causes crystals of platy minerals, such as mica and chlorite, to become rotated such that their short axes are parallel to the direction of shortening. This results in a banded, or foliated, rock, with the bands showing the colors of the minerals that formed them. Foliated rock often develops planes of cleavage. Slate is an example of a foliated metamorphic rock, originating from shale, and it typically shows well-developed cleavage that allows slate to be split into thin plates. The type of foliation that develops depends on the metamorphic grade. For instance, starting with a mudstone, the following sequence develops with increasing temperature: The mudstone is first converted to slate, which is a very fine-grained, foliated metamorphic rock, characteristic of very low grade metamorphism. Slate in turn is converted to phyllite, which is fine-grained and found in areas of low grade metamorphism.
Schist Schist ( ) is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes ...
is medium to coarse-grained and found in areas of medium grade metamorphism. High-grade metamorphism transforms the rock to
gneiss Gneiss ( ) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Gneiss forms at higher temperatures a ...
, which is coarse to very coarse-grained. Rocks that were subjected to uniform pressure from all sides, or those that lack minerals with distinctive growth habits, will not be foliated. Marble lacks platy minerals and is generally not foliated, which allows its use as a material for sculpture and architecture. Collisional orogenies are preceded by
subduction Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, ...
of oceanic crust. The conditions within the subducting slab as it plunges toward the
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
in a subduction zone produce their own distinctive regional metamorphic effects, characterized by
paired metamorphic belts Paired metamorphic belts are sets of parallel linear rock units that display contrasting metamorphic mineral assemblages. These paired belts develop along convergent plate boundaries where subduction is active. Each pair consists of one belt with ...
. The pioneering work of George Barrow on regional metamorphism in the Scottish Highlands showed that some regional metamorphism produces well-defined, mappable zones of increasing metamorphic grade. This '' Barrovian metamorphism'' is the most recognized metamorphic series in the world. However, Barrovian metamorphism is specific to
pelitic A pelite ( Greek: ''pelos'', "clay") or metapelite is a metamorphosed fine-grained sedimentary rock, i.e. mudstone or siltstone. The term was earlier used by geologists to describe a clay-rich, fine-grained clastic sediment or sedimentary roc ...
rock, formed from mudstone or siltstone, and it is not unique even in pelitic rock. A different sequence in the northeast of Scotland defines ''
Buchan metamorphism Metamorphic series include the Barrovian and Buchan series of metamorphic rocks. George Barrow (geologist), George Barrow was a geologist in Scotland who discovered the Barrovian series. These are also called metamorphic facies series. A metamorphic ...
'', which took place at lower pressure than the Barrovian.


Burial

Burial metamorphism takes place simply through rock being buried to great depths below the Earth's surface in a subsiding basin. Here the rock subjected to high temperatures and the great pressure caused by the immense weight of the rock layers above. Burial metamorphism tends to produced low-grade metamorphic rock. This shows none of the effects of deformation and folding so characteristic of dynamothermal metamorphism. Examples of metamorphic rocks formed by burial metamorphism include some of the rocks of the Midcontinent Rift System of North America, such as the Sioux Quartzite, and in the Hamersley Basin of Australia.


Contact (thermal)

Contact metamorphism occurs typically around intrusive
igneous rock Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma o ...
s as a result of the temperature increase caused by the intrusion of
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natura ...
into cooler country rock. The area surrounding the intrusion where the contact metamorphism effects are present is called the metamorphic aureole, the contact aureole, or simply the aureole. Contact metamorphic rocks are usually known as hornfels. Rocks formed by contact metamorphism may not present signs of strong deformation and are often fine-grained and extremely tough. Contact metamorphism is greater adjacent to the intrusion and dissipates with distance from the contact. The size of the aureole depends on the heat of the intrusion, its size, and the temperature difference with the wall rocks. Dikes generally have small aureoles with minimal metamorphism, extending not more than one or two dike thicknesses into the surrounding rock, whereas the aureoles around batholiths can be up to several kilometers wide. The metamorphic grade of an aureole is measured by the peak metamorphic mineral which forms in the aureole. This is usually related to the metamorphic temperatures of
pelitic A pelite ( Greek: ''pelos'', "clay") or metapelite is a metamorphosed fine-grained sedimentary rock, i.e. mudstone or siltstone. The term was earlier used by geologists to describe a clay-rich, fine-grained clastic sediment or sedimentary roc ...
or aluminosilicate rocks and the minerals they form. The metamorphic grades of aureoles at shallow depth are
albite Albite is a plagioclase feldspar mineral. It is the sodium endmember of the plagioclase solid solution series. It represents a plagioclase with less than 10% anorthite content. The pure albite endmember has the formula . It is a tectosilicate ...
- epidote hornfels, hornblende hornfels, pyroxene hornfels, and sillimanite hornfels, in increasing order of temperature of formation. However, the albite-epidote hornfels is often not formed, even though it is the lowest temperature grade. Magmatic fluids coming from the intrusive rock may also take part in the metamorphic reactions. An extensive addition of magmatic fluids can significantly modify the chemistry of the affected rocks. In this case the metamorphism grades into metasomatism. If the intruded rock is rich in
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
the result is a skarn. Fluorine-rich magmatic waters which leave a cooling granite may often form greisens within and adjacent to the contact of the granite. Metasomatic altered aureoles can localize the deposition of metallic ore minerals and thus are of economic interest. ''Fenitization'', or ''Na-metasomatism'', is a distinctive form of contact metamorphism accompanied by metasomatism. It takes place around intrusions of a rare type of magma called a '' carbonatite'' that is highly enriched in
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
s and low in
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
. Cooling bodies of carbonatite magma give off highly alkaline fluids rich in sodium as they solidify, and the hot, reactive fluid replaces much of the mineral content in the aureole with sodium-rich minerals. A special type of contact metamorphism, associated with fossil fuel fires, is known as pyrometamorphism.


Hydrothermal

Hydrothermal metamorphism is the result of the interaction of a rock with a high-temperature fluid of variable composition. The difference in composition between an existing rock and the invading fluid triggers a set of metamorphic and metasomatic reactions. The hydrothermal fluid may be magmatic (originate in an intruding magma), circulating
groundwater Groundwater is the water present beneath Earth's surface in rock and Pore space in soil, soil pore spaces and in the fractures of stratum, rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit ...
, or ocean water. Convective circulation of hydrothermal fluids in the ocean floor
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
s produces extensive hydrothermal metamorphism adjacent to spreading centers and other submarine volcanic areas. The fluids eventually escape through vents on the ocean floor known as
black smokers A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspot ...
. The patterns of this hydrothermal alteration are used as a guide in the search for deposits of valuable metal ores.


Shock

Shock metamorphism occurs when an extraterrestrial object (a meteorite for instance) collides with the Earth's surface. Impact metamorphism is, therefore, characterized by ultrahigh pressure conditions and low temperature. The resulting minerals (such as SiO2 polymorphs coesite and
stishovite Stishovite is an extremely hard, dense tetragonal form ( polymorph) of silicon dioxide. It is very rare on the Earth's surface; however, it may be a predominant form of silicon dioxide in the Earth, especially in the lower mantle. Stishovite ...
) and textures are characteristic of these conditions.


Dynamic

Dynamic metamorphism is associated with zones of high strain such as fault zones. In these environments, mechanical deformation is more important than chemical reactions in transforming the rock. The minerals present in the rock often do not reflect conditions of chemical equilibrium, and the textures produced by dynamic metamorphism are more significant than the mineral makeup. There are three
deformation mechanism A deformation mechanism, in geology, is a process occurring at a microscopic scale that is responsible for changes in a material's internal structure, shape and volume. The process involves planar discontinuity and/or displacement of atoms from t ...
s by which rock is mechanically deformed. These are '' cataclasis'', the deformation of rock via the fracture and rotation of mineral grains; plastic deformation of individual mineral crystals; and movement of individual atoms by diffusive processes. The textures of dynamic metamorphic zones are dependent on the depth at which they were formed, as the temperature and confining pressure determine the deformation mechanisms which predominate. At the shallowest depths, a fault zone will be filled with various kinds of unconsolidated cataclastic rock, such as '' fault gouge'' or '' fault breccia''. At greater depths, these are replaced by consolidated cataclastic rock, such as ''crush breccia'', in which the larger rock fragments are cemented together by calcite or quartz. At depths greater than about , ''
cataclasite Cataclasite is a cohesive granular fault rock. Comminution, also known as cataclasis, is an important process in forming cataclasites. They fall into the category of cataclastic rocks which are formed through faulting or fracturing in the upper ...
s'' appear; these are quite hard rocks consist of crushed rock fragments in a flinty matrix, which forms only at elevated temperature. At still greater depths, where temperatures exceed , plastic deformation takes over, and the fault zone is composed of mylonite. Mylonite is distinguished by its strong foliation, which is absent in most cataclastic rock. It is distinguished from the surrounding rock by its finer grain size. There is considerable evidence that cataclasites form as much through plastic deformation and recrystallization as brittle fracture of grains, and that the rock may never fully lose cohesion during the process. Different minerals become ductile at different temperatures, with quartz being among the first to become ductile, and sheared rock composed of different minerals may simultaneously show both plastic deformation and brittle fracture. The strain rate also affects the way in which rocks deform. Ductile deformation is more likely at low strain rates (less than 10−14 sec−1) in the middle and lower crust, but high strain rates can cause brittle deformation. At the highest strain rates, the rock may be so strongly heated that it briefly melts, forming a glassy rock called ''
pseudotachylite Pseudotachylyte (sometimes written as pseudotachylite) is an extremely fine-grained to glassy, dark, cohesive rock occurring as veinsTrouw, R.A.J., C.W. Passchier, and D.J. Wiersma (2010) ''Atlas of Mylonites- and related microstructures.'' Spring ...
''. Pseudotachylites seem to be restricted to dry rock, such as granulite.


Classification of metamorphic rocks

Metamorphic rocks are classified by their protolith, if this can be determined from the properties of the rock itself. For example, if examination of a metamorphic rock shows that its protolith was basalt, it will be described as a metabasalt. When the protolith cannot be determined, the rock is classified by its mineral composition or its degree of foliation.


Metamorphic grades

Metamorphic grade is an informal indication of the amount or degree of metamorphism. In the Barrovian sequence (described by George Barrow in zones of progressive metamorphism in Scotland), metamorphic grades are also classified by mineral assemblage based on the appearance of key minerals in rocks of
pelitic A pelite ( Greek: ''pelos'', "clay") or metapelite is a metamorphosed fine-grained sedimentary rock, i.e. mudstone or siltstone. The term was earlier used by geologists to describe a clay-rich, fine-grained clastic sediment or sedimentary roc ...
(shaly, aluminous) origin: Low grade ------------------- Intermediate --------------------- High grade :Greenschist ------------- Amphibolite ----------------------- Granulite : Slate --- Phyllite ----------
Schist Schist ( ) is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes ...
----------------------
Gneiss Gneiss ( ) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Gneiss forms at higher temperatures a ...
--- Migmatite : Chlorite zone :::: Biotite zone :::::::
Garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different ...
zone ::::::::::
Staurolite Staurolite is a reddish brown to black, mostly opaque, nesosilicate mineral with a white streak. It crystallizes in the monoclinic crystal system, has a Mohs hardness of 7 to 7.5 and the chemical formula: Fe2+2Al9O6(SiO4)4(O,OH)2. Magnesium, ...
zone ::::::::::::: Kyanite zone :::::::::::::::: Sillimanite zone A more complete indication of this intensity or degree is provided by the concept of metamorphic facies.


Metamorphic facies

Metamorphic facies are recognizable
terranes In geology, a terrane (; in full, a tectonostratigraphic terrane) is a crust fragment formed on a tectonic plate (or broken off from it) and accreted or " sutured" to crust lying on another plate. The crustal block or fragment preserves its own ...
or zones with an assemblage of key minerals that were in equilibrium under specific range of temperature and pressure during a metamorphic event. The facies are named after the metamorphic rock formed under those facies conditions from
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
. The particular mineral assemblage is somewhat dependent on the composition of that protolith, so that (for example) the amphibolite facies of a marble will not be identical with the amphibolite facies of a pellite. However, the facies are defined such that metamorphic rock with as broad a range of compositions as is practical can be assigned to a particular facies. The present definition of metamorphic facies is largely based on the work of the Finnish geologist, Pentti Eskola in 1921, with refinements based on subsequent experimental work. Eskola drew upon the zonal schemes, based on index minerals, that were pioneered by the British geologist, George Barrow. The metamorphic facies is not usually considered when classifying metamorphic rock based on protolith, mineral mode, or texture. However, a few metamorphic facies produce rock of such distinctive character that the facies name is used for the rock when more precise classification is not possible. The chief examples are
amphibolite Amphibolite () is a metamorphic rock that contains amphibole, especially hornblende and actinolite, as well as plagioclase feldspar, but with little or no quartz. It is typically dark-colored and dense, with a weakly foliated or schistose (flak ...
and eclogite. The British Geological Survey strongly discourages use of '' granulite'' as a classification for rock metamorphosed to the granulite facies. Instead, such rock will often be classified as a granofels. However, this is not universally accepted. See diagram for more detail.


Prograde and retrograde

Metamorphism is further divided into prograde and retrograde metamorphism. Prograde metamorphism involves the change of mineral assemblages ( paragenesis) with increasing temperature and (usually) pressure conditions. These are solid state dehydration reactions, and involve the loss of volatiles such as water or carbon dioxide. Prograde metamorphism results in rock characteristic of the maximum pressure and temperature experienced. Metamorphic rocks usually do not undergo further change when they are brought back to the surface. Retrograde metamorphism involves the reconstitution of a rock via revolatisation under decreasing temperatures (and usually pressures), allowing the mineral assemblages formed in prograde metamorphism to revert to those more stable at less extreme conditions. This is a relatively uncommon process, because volatiles produced during prograde metamorphism usually migrate out of the rock and are not available to recombine with the rock during cooling. Localized retrograde metamorphism can take place when fractures in the rock provide a pathway for groundwater to enter the cooling rock.


Equilibrium mineral assemblages

Metamorphic processes act to bring the protolith closer to thermodynamic equilibrium, which is its state of maximum stability. For example, shear stress (nonhydrodynamic stress) is incompatible with thermodynamic equilibrium, so sheared rock will tend to deform in ways that relieve the shear stress. The most stable assemblage of minerals for a rock of a given composition is that which minimizes the
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature an ...
G(p,T) = U + pV - TS where: *''U'' is the internal energy (SI unit:
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force appli ...
), * ''p'' is
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
(SI unit:
pascal Pascal, Pascal's or PASCAL may refer to: People and fictional characters * Pascal (given name), including a list of people with the name * Pascal (surname), including a list of people and fictional characters with the name ** Blaise Pascal, Frenc ...
), * ''V'' is
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). ...
(SI unit: m3), * ''T'' is the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
(SI unit:
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
), * ''S'' is the
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
(SI unit: joule per kelvin), In other words, a metamorphic reaction will take place only if it lowers the total Gibbs free energy of the protolith. Recrystallization to coarser crystals lowers the Gibbs free energy by reducing surface energy, while phase changes and neocrystallization reduce the bulk Gibbs free energy. A reaction will begin at the temperature and pressure where the Gibbs free energy of the reagents becomes greater than that of the products. A mineral phase will generally be more stable if it has a lower internal energy, reflecting tighter binding between its atoms. Phases with a higher density (expressed as a lower molar volume ''V'') are more stable at higher pressure, while minerals with a less ordered structure (expressed as a higher entropy ''S'') are favored at high temperature. Thus andalusite is stable only at low pressure, since it has the lowest density of any aluminium silicate polymorph, while sillimanite is the stable form at higher temperatures, since it has the least ordered structure. The Gibbs free energy of a particular mineral at a specified temperature and pressure can be expressed by various analytic formulas. These are calibrated against experimentally measured properties and phase boundaries of mineral assemblages. The equilibrium mineral assemblage for a given bulk composition of rock at a specified temperature and pressure can then be calculated on a computer. However, it is often very useful to represent equilibrium mineral assemblages using various kinds of diagrams. These include petrogenetic grids and compatibility diagrams (compositional phase diagrams.)


Petrogenetic grids

A petrogenetic grid is a geologic phase diagram that plots experimentally derived metamorphic reactions at their pressure and temperature conditions for a given rock composition. This allows metamorphic petrologists to determine the pressure and temperature conditions under which rocks metamorphose. The Al2SiO5 nesosilicate phase diagram shown is a very simple petrogenetic grid for rocks that only have a composition consisting of
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
(Al),
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
(Si), and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
(O). As the rock undergoes different temperatures and pressure, it could be any of the three given polymorphic minerals. For a rock that contains multiple phases, the boundaries between many phase transformations may be plotted, though the petrogenetic grid quickly becomes complicated. For example, a petrogenetic grid might show both the aluminium silicate phase transitions and the transition from aluminum silicate plus potassium feldspar to muscovite plus quartz.


Compatibility diagrams

Whereas a petrogenetic grid shows phases for a single composition over a range of temperature and pressure, a ''compatibility diagram'' shows how the mineral assemblage varies with composition at a fixed temperature and pressure. Compatibility diagrams provide an excellent way to analyze how variations in the rock's composition affect the mineral paragenesis that develops in a rock at particular pressure and temperature conditions. Because of the difficulty of depicting more than three components (as a
ternary diagram A ternary plot, ternary graph, triangle plot, simplex plot, Gibbs triangle or de Finetti diagram is a barycentric plot on three variables which sum to a constant. It graphically depicts the ratios of the three variables as positions in an equi ...
), usually only the three most important components are plotted, though occasionally a compatibility diagram for four components is plotted as a
projected Projected is an American rock supergroup consisting of Sevendust members John Connolly and Vinnie Hornsby, Alter Bridge and Creed drummer Scott Phillips, and former Submersed and current Tremonti guitarist Eric Friedman. The band released the ...
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
.


See also

* * Metamorphosis of snow *


Footnotes


References

* * * * * * * * * Eskola P., 1920, ''The Mineral Facies of Rocks'', Norsk. Geol. Tidsskr., 6, 143–194 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


Further reading

* Winter J.D., 2001, ''An Introduction to Igneous and Metamorphic Petrology'', Prentice-Hall .


External links


Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks, 1. How to Name a Metamorphic Rock

Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks, 2. Types, Grade, and Facies of Metamorphism

Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks, 3. Structural terms including fault rock terms

Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks, 4. High P/T Metamorphic Rocks






* ttps://web.archive.org/web/20110720035915/http://metpetdb.rpi.edu/ Metamorphic Petrology Database(
MetPetDB MetPetDB is a relational database and repository for global geochemical data on and images collected from metamorphic rocks from the earth's crust. MetPetDB is designed and built by a global community of metamorphic petrologists in collaboration ...
) – Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute {{Authority control Geological processes Metamorphic petrology