Random element
   HOME

TheInfoList



OR:

In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors,
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s, processes, fields,
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in ...
, transformations, and also sets or collections of sets.” The modern-day usage of “random element” frequently assumes the space of values is a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
, often a Banach or Hilbert space with a specified natural sigma algebra of subsets.


Definition

Let (\Omega, \mathcal, P) be a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
, and (E, \mathcal) a
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
. A random element with values in ''E'' is a function which is (\mathcal, \mathcal)-
measurable In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simila ...
. That is, a function X such that for any B\in \mathcal, the preimage of B lies in \mathcal. Sometimes random elements with values in E are called E-valued random variables. Note if (E, \mathcal)=(\mathbb, \mathcal(\mathbb)), where \mathbb are the real numbers, and \mathcal(\mathbb) is its Borel σ-algebra, then the definition of random element is the classical definition of random variable. The definition of a random element X with values in a Banach space B is typically understood to utilize the smallest \sigma-algebra on ''B'' for which every bounded linear functional is measurable. An equivalent definition, in this case, to the above, is that a map X: \Omega \rightarrow B, from a probability space, is a random element if f \circ X is a random variable for every bounded linear functional ''f'', or, equivalently, that X is weakly measurable.


Examples of random elements


Random variable

A ''random variable'' is the simplest type of random element. It is a map X\colon \Omega \to \mathbb is a measurable function from the set of possible outcomes \Omega to \mathbb. As a real-valued function, X often describes some numerical quantity of a given event. E.g. the number of heads after a certain number of coin flips; the heights of different people. When the image (or range) of X is finite or countably infinite, the random variable is called a discrete random variable and its distribution can be described by a probability mass function which assigns a probability to each value in the image of X. If the image is uncountably infinite then X is called a continuous random variable. In the special case that it is
absolutely continuous In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central ope ...
, its distribution can be described by a probability density function, which assigns probabilities to intervals; in particular, each individual point must necessarily have probability zero for an absolutely continuous random variable. Not all continuous random variables are absolutely continuous, for example a mixture distribution. Such random variables cannot be described by a probability density or a probability mass function.


Random vector

A random vector is a column
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
\mathbf=(X_1,...,X_n)^T (or its
transpose In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The tr ...
, which is a
row vector In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, c ...
) whose components are scalar-valued random variables on the same
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, P), where \Omega is the
sample space In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually den ...
, \mathcal is the sigma-algebra (the collection of all events), and P is the probability measure (a function returning each event's
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speakin ...
). Random vectors are often used as the underlying implementation of various types of aggregate random variables, e.g. a
random matrix In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathemat ...
,
random tree In mathematics and computer science, a random tree is a tree or arborescence that is formed by a stochastic process. Types of random trees include: *Uniform spanning tree, a spanning tree of a given graph in which each different tree is equally ...
, random sequence,
random process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...
, etc.


Random matrix

A random matrix is a matrix-valued random element. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
of a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
can be computed from the dynamical matrix of the particle-particle interactions within the lattice.


Random function

A random function is a type of random element in which a single outcome is selected from some family of functions, where the family consists some class of all maps from the domain to the
codomain In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either th ...
. For example, the class may be restricted to all continuous functions or to all
step function In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having onl ...
s. The values determined by a random function evaluated at different points from the same realization would not generally be
statistically independent Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of o ...
but, depending on the model, values determined at the same or different points from different realisations might well be treated as independent.


Random process

A Random process is a collection of random variables, representing the evolution of some system of random values over time. This is the probabilistic counterpart to a deterministic process (or deterministic system). Instead of describing a process which can only evolve in one way (as in the case, for example, of solutions of an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
), in a stochastic or random process there is some indeterminacy: even if the initial condition (or starting point) is known, there are several (often infinitely many) directions in which the process may evolve. In the simple case of discrete time, as opposed to
continuous time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
, a stochastic process involves a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of random variables and the time series associated with these random variables (for example, see Markov chain, also known as discrete-time Markov chain).


Random field

Given a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, P) and a
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
X, an ''X''-valued random field is a collection of ''X''-valued random variables indexed by elements in a topological space ''T''. That is, a random field ''F'' is a collection : \ where each F_t is an ''X''-valued random variable. Several kinds of random fields exist, among them the
Markov random field In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to b ...
(MRF), Gibbs random field (GRF),
conditional random field Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without consid ...
(CRF), and Gaussian random field. An MRF exhibits the Markovian property : P(X_i=x_i, X_j=x_j, i\neq j) =P(X_i=x_i, \partial_i), \, where \partial_i is a set of neighbours of the random variable ''X''''i''. In other words, the probability that a random variable assumes a value depends on the other random variables only through the ones that are its immediate neighbours. The probability of a random variable in an MRF is given by : P(X_i=x_i, \partial_i) = \frac, where Ω' is the same realization of Ω, except for random variable ''X''''i''. It is difficult to calculate with this equation, without recourse to the relation between MRFs and GRFs proposed by Julian Besag in 1974.


Random measure

A random measure is a measure-valued random element. Kallenberg, O., ''Random Measures'', 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). . An authoritative but rather difficult reference. Jan Grandell, Point processes and random measures, ''Advances in Applied Probability'' 9 (1977) 502-526.
JSTOR
A nice and clear introduction.
Let X be a complete separable metric space and \mathfrak(X) the
σ-algebra In mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set ''X'' is a collection Σ of subsets of ''X'' that includes the empty subset, is closed under complement, and is closed under countable unions and countabl ...
of its Borel sets. A Borel measure μ on X is boundedly finite if μ(A) < ∞ for every bounded Borel set A. Let M_X be the space of all boundedly finite measures on \mathfrak(X). Let be a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
, then a random measure maps from this probability space to the
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
. A measure generally might be decomposed as: : \mu=\mu_d + \mu_a = \mu_d + \sum_^N \kappa_n \delta_, Here \mu_d is a diffuse measure without atoms, while \mu_a is a purely atomic measure.


Random set

A random set is a set-valued random element. One specific example is a
random compact set In mathematics, a random compact set is essentially a compact set-valued random variable. Random compact sets are useful in the study of attractors for random dynamical systems. Definition Let (M, d) be a complete separable metric space. Let \mat ...
. Let (M, d) be a complete separable
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
. Let \mathcal denote the set of all compact subsets of M. The Hausdorff metric h on \mathcal is defined by :h(K_, K_) := \max \left\. (\mathcal, h) is also а complete separable metric space. The corresponding open subsets generate a σ-algebra on \mathcal, the
Borel sigma algebra In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named ...
\mathcal(\mathcal) of \mathcal. A random compact set is а measurable function K from а
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, \mathbb) into (\mathcal, \mathcal (\mathcal) ). Put another way, a random compact set is a measurable function K \colon \Omega \to 2^ such that K(\omega) is almost surely compact and :\omega \mapsto \inf_ d(x, b) is a measurable function for every x \in M.


Random geometric objects

These include random points, random figures,Stoyan, D., and Stoyan, H. (1994) ''Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics''. Chichester, New York: John Wiley & Sons. and random shapes.


References


Literature

* Hoffman-Jorgensen J., Pisier G. (1976) "Ann.Probab.", v.4, 587–589. * Mourier E. (1955) Elements aleatoires dans un espace de Banach (These). Paris. * Prokhorov Yu.V. (1999) Random element. Probability and Mathematical statistics. Encyclopedia. Moscow: "Great Russian Encyclopedia", P.623. {{refend


External links


Entry in Springer Encyclopedia of Mathematics
Statistical randomness