Railway Signalling
   HOME

TheInfoList



OR:

Railway signalling (), also called railroad signaling (), is a system used to control the movement of railway traffic. Trains move on fixed
rails Rail or rails may refer to: Rail transport *Rail transport and related matters *Rail (rail transport) or railway lines, the running surface of a railway Arts and media Film * ''Rails'' (film), a 1929 Italian film by Mario Camerini * ''Rail'' ( ...
, making them uniquely susceptible to
collision In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great fo ...
. This susceptibility is exacerbated by the enormous weight and inertia of a train, which makes it difficult to quickly stop when encountering an obstacle. In the UK, the
Regulation of Railways Act 1889 The Regulation of Railways Act 1889 (52 & 53 Vict c 57) is an Act of the Parliament of the United Kingdom. It is one of the Railway Regulation Acts 1840 to 1893.The Short Titles Act 1896, section 2(1) and Schedule 2 It was enacted following th ...
introduced a series of requirements on matters such as the implementation of interlocked block signalling and other safety measures as a direct result of the
Armagh rail disaster The Armagh rail disaster happened on 12 June 1889 near Armagh, County Armagh, in Ireland, when a crowded Sunday school excursion train had to negotiate a steep incline; the steam locomotive was unable to complete the climb and the train stall ...
in that year. Most forms of train control involve movement authority being passed from those responsible for each section of a rail network (e.g. a signalman or stationmaster) to the train crew. The set of rules and the physical equipment used to accomplish this determine what is known as the ''method of working'' (UK), ''method of operation'' (US) or ''safeworking'' (Aus.). Not all these methods require the use of physical
signals In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The ''IEEE Transactions on Signal Processing'' ...
, and some systems are specific to
single track Single may refer to: Arts, entertainment, and media * Single (music), a song release Songs * "Single" (Natasha Bedingfield song), 2004 * "Single" (New Kids on the Block and Ne-Yo song), 2008 * "Single" (William Wei song), 2016 * "Single", by ...
railways. The earliest rail cars were hauled by horses or mules. A mounted flagman on a horse preceded some early trains. Hand and arm signals were used to direct the "train drivers". Foggy and poor-visibility conditions later gave rise to flags and lanterns. Wayside signalling dates back as far as 1832, and used elevated flags or balls that could be seen from afar.


Timetable operation

The simplest form of operation, at least in terms of equipment, is to run the system according to a timetable. Every train crew understands and adheres to a fixed schedule. Trains may only run on each track section at a scheduled time, during which they have 'possession' and no other train may use the same section. When trains run in opposite directions on a single-track railway, meeting points ("meets") are scheduled, at which each train must wait for the other at a passing place. Neither train is permitted to move before the other has arrived. In the US, the display of two green flags (green lights at night) is an indication that another train is following the first and the waiting train must wait for the next train to pass. In addition, the train carrying the flags gives eight blasts on the whistle as it approaches. The waiting train must return eight blasts before the flag carrying train may proceed. The timetable system has several disadvantages. First, there is no positive confirmation that the track ahead is clear, only that it is scheduled to be clear. The system does not allow for engine failures and other such problems, but the timetable is set up so that there should be sufficient time between trains for the crew of a failed or delayed train to walk far enough to set warning flags, flares, and ''
detonators A detonator, frequently a blasting cap, is a device used to trigger an explosive device. Detonators can be chemically, mechanically, or electrically initiated, the last two being the most common. The commercial use of explosives uses electri ...
'' or ''torpedoes'' (UK and US terminology, respectively) to alert any other train crew. A second problem is the system's inflexibility. Trains cannot be added, delayed, or rescheduled without advance notice. A third problem is a corollary of the second: the system is inefficient. To provide flexibility, the timetable must give trains a broad allocation of time to allow for delays, so the line is not in the possession of each train for longer than is otherwise necessary. Nonetheless, this system permits operation on a vast scale, with no requirements for any kind of communication that travels faster than a train. Timetable operation was the normal mode of operation in North America in the early days of the railroad.


Timetable and train order

With the advent of the telegraph in 1841, a more sophisticated system became possible because this provided a means whereby messages could be transmitted ahead of the trains. The telegraph allows the dissemination of any timetable changes, known as ''
train order A train order is "an order issued by or through a proper railway official to govern the movement of trains". Train order operation is the system by which trains are safely moved by train orders. It is distinguished from other forms of train opera ...
s''. These allow the cancellation, rescheduling and addition of train services. North American practice meant that train crews generally received their orders at the next station at which they stopped, or were sometimes handed up to a locomotive 'on the run' via a long staff. Train orders allowed dispatchers to set up meets at sidings, force a train to wait in a siding for a priority train to pass, and to maintain at least one block spacing between trains going the same direction. Timetable and train order operation was commonly used on American railroads until the 1960s, including some quite large operations such as the Wabash Railroad and the Nickel Plate Road. Train order traffic control was used in Canada until the late 1980s on the
Algoma Central Railway The Algoma Central Railway is a railway in Northern Ontario that operates between Sault Ste. Marie and Hearst. It used to have a branch line to Wawa, Ontario. The area served by the railway is sparsely populated, with few roads. The ra ...
and some spurs of the Canadian Pacific Railway. Timetable and train order was not used widely outside North America, and has been phased out in favour of radio dispatch on many light-traffic lines and electronic signals on high-traffic lines. More details of North American operating methods is given below. A similar method, known as 'Telegraph and Crossing Order' was used on some busy single lines in the UK during the 19th century. However, a series of head-on collisions resulted from authority to proceed being wrongly given or misunderstood by the train crew - the worst of which was the
collision In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great fo ...
between Norwich and Brundall, Norfolk, in 1874. As a result, the system was phased out in favour of token systems. This eliminated the danger of ambiguous or conflicting instructions being given because token systems rely on objects to give authority, rather than verbal or written instructions; whereas it is very difficult to completely prevent conflicting orders being given, it is relatively simple to prevent conflicting tokens being handed out.


Block signalling

Trains cannot collide with each other if they are not permitted to occupy the same section of track at the same time, so railway lines are divided into sections known as ''blocks''. In normal circumstances, only one train is permitted in each block at a time. This principle forms the basis of most railway safety systems. Blocks can either be fixed (block limits are fixed along the line) or moving blocks (ends of blocks defined relative to moving trains).


History of block signalling

On double tracked railway lines, which enabled trains to travel in one direction on each track, it was necessary to space trains far enough apart to ensure that they could not collide. In the very early days of railways, men (originally called 'policemen', which is the origin of UK signalmen being referred to as "bob", "bobby" or "officer", when train-crew are speaking to them via a signal telephone) were employed to stand at intervals ("blocks") along the line with a
stopwatch A stopwatch is a timepiece designed to measure the amount of time that elapses between its activation and deactivation. A large digital version of a stopwatch designed for viewing at a distance, as in a sports stadium, is called a stop clock. ...
and use hand signals to inform train drivers that a train had passed more or less than a certain number of minutes previously. This was called "time interval working". If a train had passed very recently, the following train was expected to slow down to allow more space to develop. The watchmen had no way of knowing whether a train had cleared the line ahead, so if a preceding train stopped for any reason, the crew of a following train would have no way of knowing unless it was clearly visible. As a result, accidents were common in the early days of railways. With the invention of the
electrical telegraph Electrical telegraphs were point-to-point text messaging systems, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems ...
, it became possible for staff at a station or signal box to send a message (usually a specific number of rings on a
bell A bell is a directly struck idiophone percussion instrument. Most bells have the shape of a hollow cup that when struck vibrates in a single strong strike tone, with its sides forming an efficient resonator. The strike may be made by an inte ...
) to confirm that a train had passed and that a specific block was clear. This was called the "absolute block system". Fixed mechanical signals began to replace hand signals from the 1830s. These were originally worked locally, but it later became normal practice to operate all the signals on a particular block with levers grouped together in a signal box. When a train passed into a block, a signalman would protect that block by setting its signal to 'danger'. When an 'all clear' message was received, the signalman would move the signal into the 'clear' position. The absolute block system came into use gradually during the 1850s and 1860s and became mandatory in the United Kingdom after Parliament passed
legislation Legislation is the process or result of enrolling, enacting, or promulgating laws by a legislature, parliament, or analogous governing body. Before an item of legislation becomes law it may be known as a bill, and may be broadly referred to ...
in 1889 following a number of accidents, most notably the
Armagh rail disaster The Armagh rail disaster happened on 12 June 1889 near Armagh, County Armagh, in Ireland, when a crowded Sunday school excursion train had to negotiate a steep incline; the steam locomotive was unable to complete the climb and the train stall ...
. This required block signalling for all passenger railways, together with
interlocking In railway signalling, an interlocking is an arrangement of signal apparatus that prevents conflicting movements through an arrangement of tracks such as junctions or crossings. The signalling appliances and tracks are sometimes collectively re ...
, both of which form the basis of modern signalling practice today. Similar legislation was passed by the United States around the same time. Not all blocks are controlled using fixed signals. On some
single track Single may refer to: Arts, entertainment, and media * Single (music), a song release Songs * "Single" (Natasha Bedingfield song), 2004 * "Single" (New Kids on the Block and Ne-Yo song), 2008 * "Single" (William Wei song), 2016 * "Single", by ...
railways in the UK, particularly those with low usage, it is common to use token systems that rely on the train driver's physical possession of a unique token as authority to occupy the line, normally in addition to fixed signals.


Entering and leaving a manually controlled block

Before allowing a train to enter a block, a signalman must be certain that it is not already occupied. When a train leaves a block, he must inform the signalman controlling entry to the block. Even if the signalman receives advice that the previous train has left a block, he is usually required to seek permission from the next signal box to admit the next train. When a train arrives at the end of a block section, before the signalman sends the message that the train has arrived, he must be able to see the end-of-train marker on the back of the last vehicle. This ensures that no part of the train has become detached and remains within the section. The end of train marker might be a coloured disc (usually red) by day or a coloured oil or electric lamp (again, usually red). If a train enters the next block before the signalman sees that the disc or lamp is missing, he asks the next signal box to stop the train and investigate.


Permissive and absolute blocks

Under a permissive block system, trains are permitted to pass signals indicating the line ahead is occupied, but only at such a speed that they can stop safely should an obstacle come into view. This allows improved efficiency in some situations and is mostly used in the USA. In most countries it is restricted to freight trains only, and it may be restricted depending on the level of visibility. Permissive block working may also be used in an emergency, either when a driver is unable to contact a signalman after being held at a danger signal for a specific time, although this is only permitted when the signal does not protect any conflicting moves, and also when the signalman is unable to contact the next signal box to make sure the previous train has passed, for example if the telegraph wires are down. In these cases, trains must proceed at very low speed (typically or less) so that they are able to stop short of any obstruction. In most cases, this is not allowed during times of poor visibility (e.g., fog or falling snow). Even with an absolute block system, multiple trains may enter a block with authorization. This may be necessary in order to split or join trains together, or to rescue failed trains. In giving authorization, the signalman also ensures that the driver knows precisely what to expect ahead. The driver must operate the train in a safe manner taking this information into account. Generally, the signal remains at danger, and the driver is given verbal authority, usually by a yellow flag, to pass a signal at danger, and the presence of the train in front is explained. Where trains regularly enter occupied blocks, such as stations where coupling takes place, a subsidiary signal, sometimes known as a "calling on" signal, is provided for these movements, otherwise they are accomplished through train orders.


Automatic block

Under automatic block signalling, signals indicate whether or not a train may enter a block based on automatic train detection indicating whether a block is clear. The signals may also be controlled by a signalman, so that they only provide a ''proceed'' indication if the signalman sets the signal accordingly and the block is clear.


Fixed block

Most blocks are "fixed", i.e. they include the section of track between two fixed points. On timetable, train order, and token-based systems, blocks usually start and end at selected stations. On signalling-based systems, blocks start and end at signals. The lengths of blocks are designed to allow trains to operate as frequently as necessary. A lightly used line might have blocks many kilometres long, but a busy commuter line might have blocks a few hundred metres long. A train is not permitted to enter a block until a signal indicates that the train may proceed, a dispatcher or signalman instructs the driver accordingly, or the driver takes possession of the appropriate token. In most cases, a train cannot enter the block until not only the block itself is clear of trains, but there is also an empty section beyond the end of the block for at least the distance required to stop the train. In signalling-based systems with closely spaced signals, this overlap could be as far as the signal following the one at the end of the section, effectively enforcing a space between trains of two blocks. When calculating the size of the blocks, and therefore the spacing between the signals, the following have to be taken into account: *Line speed (the maximum permitted speed over the line-section) *Train speed (the maximum speed of different types of traffic) *Gradient (to compensate for longer or shorter braking distances) *The braking characteristics of trains (different types of train, e.g., freight, high-speed passenger, have different inertial figures) *Sighting (how far ahead a driver can see a signal) *Reaction time (of the driver) Historically, some lines operated so that certain large or high speed trains were signalled under different rules and only given the right of way if two blocks in front of the train were clear.


Moving block

Under a moving block system, computers calculate a safe zone around each moving train that no other train is allowed to enter. The system depends on knowledge of the precise location and speed and direction of each train, which is determined by a combination of several sensors such as radio frequency identification along the track, ultra-wideband, radar, inertial measurement units, accelerometers and trainborne speedometers (
GPS The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
systems cannot be relied upon because they do not work in tunnels). Moving block setups require instructions to be directly passed to the train instead of using lineside signals. This has the advantage of increasing track capacity by allowing trains to run closer together while maintaining the required safety margins.


Centralized traffic control

Centralized traffic control (CTC) is a form of railway signalling that originated in North America. CTC consolidates train routing decisions that were previously carried out by local signal operators or the train crews themselves. The system consists of a centralized train dispatcher's office that controls railroad interlockings and traffic flows in portions of the rail system designated as CTC territory.


Train detection

Train detection refers to the presence or absence of trains on a defined section of line.


Track circuits

The most common way to determine whether a section of line is occupied is by use of a track circuit. The rails at either end of each section are electrically isolated from the next section, and an electrical current is fed to both running rails at one end. A relay at the other end is connected to both rails. When the section is unoccupied, the relay coil completes an electrical circuit, and is energized. However, when a train enters the section, it short-circuits the current in the rails, and the relay is de-energized. This method does not explicitly need to check that the entire train has left the section. If part of the train remains in the section, the track circuit detects that part. This type of circuit detects the absence of trains, both for setting the signal indication and for providing various interlocking functions—for example, preventing points from being moved while a train is approaching them. Electrical circuits also ''prove'' that points are locked in the appropriate position before the signal protecting that route can be cleared. UK trains and staff working in track circuit block areas carry track circuit operating clips (TCOC) so that, in the event of something fouling an adjacent running-line, the track circuit can be short-circuited. This places the signal protecting that line to 'danger' to stop an approaching train before the signaller can be alerted.


Axle counters

An alternate method of determining the occupied status of a block uses devices located at its beginning and end that count the number of axles that enter and leave the block section. If the number of axles leaving the block section equals those that entered it, the block is assumed to be clear. Axle counters provide similar functions to track circuits, but also exhibit a few other characteristics. In a damp environment an axle counted section can be far longer than a track circuited one. The low ballast resistance of very long track circuits reduces their sensitivity. Track circuits can automatically detect some types of track defect such as a broken rail. In the event of power restoration after a power failure, an axle counted section is left in an undetermined state until a train has passed through the affected section. A track circuited section immediately detects the presence of a train in section.


Fixed signals

On most railways, physical
signals In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The ''IEEE Transactions on Signal Processing'' ...
are erected at the lineside to indicate to drivers whether the line ahead is occupied and to ensure that sufficient space exists between trains to allow them to stop.


Mechanical signals

Older forms of signal displayed their different aspects by their physical position. The earliest types comprised a board that was either turned face-on and fully visible to the driver, or rotated so as to be practically invisible. While this type of signal is still in use in some countries (e.g., France and Germany), by far the most common form of mechanical signal worldwide is the semaphore signal. This comprises a pivoted arm or blade that can be inclined at different angles. A horizontal arm is the most restrictive indication (for 'danger', 'caution', 'stop and proceed' or 'stop and stay' depending on the type of signal). To enable trains to run at night, one or more lights are usually provided at each signal. Typically this comprises a permanently lit oil lamp with movable coloured spectacles in front that alter the colour of the light. The driver therefore had to learn one set of indications for daytime viewing and another for nighttime viewing. Whilst it is normal to associate the presentation of a green light with a safe condition, this was not historically the case. In the very early days of railway signalling, the first coloured lights (associated with the turned signals above) presented a white light for 'clear' and a red light for 'danger'. Green was originally used to indicate 'caution' but fell out of use when the time interval system was discontinued. A green light subsequently replaced white for 'clear', to address concerns that a broken red lens could be taken by a driver as a false 'clear' indication. It was not until scientists at Corning Glassworks perfected a shade of yellow without any tinges of green or red that yellow became the accepted colour for 'caution'. Mechanical signals are usually remotely operated by wire from a lever in a signal box, but electrical or hydraulic operation is normally used for signals that are located too distant for manual operation.


Colour light signals

On most modern railways, colour light signals have largely replaced mechanical ones. Colour light signals have the advantage of displaying the same aspects by night as by day, and require less maintenance than mechanical signals. Although signals vary widely between countries, and even between railways within a given country, a typical system of aspects would be: *Green: Proceed at line speed. Expect to find next signal displaying green or yellow. *Yellow: Prepare to find next signal displaying red. *Red: Stop. On some railways, colour light signals display the same set of aspects as shown by the lights on mechanical signals during darkness.


Route signalling and speed signalling

Signalling of British origin generally conforms to the principle of ''route signalling''. Most railway systems around the world, however, use what is known as ''speed signalling''. Note: Generally both Route and Speed signalling follow the exact same rules on straight sections of track without junctions, the differences between the two system arise when there are junctions involved, as both systems have different methods of notifying trains about junctions. Under route signalling, a driver is informed which route the train will take beyond each signal (unless only one route is possible). This is achieved by a ''route indicator'' attached to the signal. The driver uses his route knowledge, reinforced by speed restriction signs fixed at the lineside, to drive the train at the correct speed for the route to be taken. This method has the disadvantage that the driver may be unfamiliar with a route onto which he has been diverted due to some emergency condition. Several accidents have been caused by this alone. For this reason, in the UK drivers are only allowed to drive on routes that they have been trained on and must regularly travel over the lesser used diversionary routes to keep their route knowledge up to date. Under speed signalling, the signal aspect informs the driver at what speed he may proceed, but not necessarily the route the train will take. Speed signalling requires a far greater range of signal aspects than route signalling, but less dependence is placed on drivers' route knowledge. Many systems have come to use elements of both systems to give drivers as much information as possible. This can mean that speed signalling systems may use route indications in conjunction with speed aspects to better inform drivers of their route; for example, route indications may be used at major stations to indicate to arriving trains to which platform they are routed. Likewise, some route signalling systems indicate approach speed using theatre displays so that drivers know what speed they must travel. Melbourne Signal with Route Inidcator.png, An example of a signal from Melbourne Victoria: this signal is displaying a speed signalling aspect, in conjunction with a route indicator


Approach release

When the train is routed towards a diverging route that must be taken at a speed significantly less than the mainline speed, the driver must be given adequate prior warning. Under ''route signalling'', the aspects necessary to control speed do not exist, so a system known as ''approach release'' is often employed. This involves holding the junction signal at a restrictive aspect (typically ''stop'') so that the signals on the approach show the correct sequence of caution aspects. The driver brakes in accordance with the caution aspect, without necessarily being aware that the diverging route has in fact been set. As the train approaches the junction signal, its aspect may clear to whatever aspect the current track occupancy ahead permits. Where the turnout speed is the same, or nearly the same, as the mainline speed, approach release is unnecessary. Under ''speed signalling'', the signals approaching the divergence display aspects appropriate to control the trains speed, so no ''approach release'' is required. There is also a system of ''flashing yellows'' used in the UK that allows trains to approach a diverging route at higher speed. This informs the driver that the route ahead is set onto a diverging line. With the advent of faster modern day trains and junctions a better system for advising drivers was required and so the following system was developed way back in the early 1980s. The system has been refined over the years, now being used internationally and it is also used on lower speed 3-aspect signalling systems where the ''single flashing yellow'' is the driver's first indication. On the 4-aspect system, if the route through the junction is clear the junction signal will display a single ''steady yellow'' aspect together with an illuminated junction indicator showing the selected route. The signal prior to the junction signal will now show a ''single flashing yellow'' aspect and the signal prior to that one will display ''two flashing yellow'' aspects. The driver's route knowledge tells them permissible speed across the diverging junction, and they will begin to slow the train upon seeing the ''two flashing yellows''. The flashing signals tell the driver that the route through the junction is set and is clear, but that beyond that the first signal on the diverging route is ''red'' so they must be prepared to stop there. As the train approaches the junction signal, the signal may ''step up'' to a less restrictive aspect (single ''yellow'', ''two yellows'' or ''green'') depending on how far ahead the line is clear.


Speed-controlled approach

Some systems in the world use mechanical speed control systems in conjunction with signalling to ensure the speed of a train is limited to a specific value, in order to ensure the train is travelling at a speed in which it is able to stop before an obstruction. These systems most often use mechanical train stop devices (a small arm coming up from the rails that will apply the brakes of a train when run over) to "trip" the brakes of a train that is traveling too fast. Normally, once a train reaches a certain point on the tracks, it sets off a timer, when the timer runs out the train stop arm will lower, allowing a train to go past uninterrupted. The timing is designed so that if the train is traveling at the intended speed (or slower) then the train will be able to continue without issue, but if the train is traveling too fast, then the Train Stop will trip the train and bring it to a halt. This system can be used to ensure a train is traveling at a certain speed, which allows designers to be confident that shorter signal overlaps will be sufficient, and thus employment of this system can help to greatly improve capacity of a railway line. The system is most often used on approach to dead end junctions to stop trains from crashing into the buffers at the end, as has happened in places such as
Moorgate Moorgate was one of the City of London's northern gates in its defensive wall, the last to be built. The gate took its name from the Moorfields, an area of marshy land that lay immediately north of the wall. The gate was demolished in 1762, bu ...
. It is also used on high traffic lines to allow for higher capacity, such as the City Circle Railway in Sydney, where it was used on the western half from 1932 to allow 42 trains per hour to traverse the line in each direction, each station would have multiple train stops along the length of the platforms that would progressively lower to ensure an arriving train would not crash into the departing train, less than 100 meters ahead. This system was modified in the early 1990s, so that an arriving train would not be able to enter the platform until the previous train had departed, however the trips continue to be used to overcome the signal overlap normally required. These systems are often used in conjunction with signalling aspects that have maximum speeds (even in route signalling systems).


Safety systems

A train driver failing to respond to a signal's indication can be catastrophic. As a result, various auxiliary safety systems have been devised. Any such system requires installation of some degree of trainborne and wayside equipment. Some systems only intervene in the event of a signal being passed at danger (SPAD). Others include audible and/or visual indications inside the driver's cab to supplement the lineside signals. Automatic brake application occurs if the driver should fail to acknowledge a warning. The most advanced train control systems have no driver at all relying on computers to drive the system entirely such as Skytrain in Vancouver, Canada and the metro system in Doha, Qatar. In-cab safety systems are of great benefit during fog, when poor visibility would otherwise require that restrictive measures be put in place. Safety systems are also important in urban rail where it is impossible to see around corners in subway and metro tunnels. On-board and wayside computers can track trains around tight corners at higher speeds ensuring safety.


Cab signalling

Cab signalling is a subsystem that communicates signalling information into the train cab such as driving position, speed and failure alarms. Cab signaling units are important human factors engineering subsystems in modern train signalling systems. If there is an active cab, the orientation of the train is decided, i.e. the side of the active cab is considered as the front of the train. In modern systems, a
train protection system A train protection system is a railway technical installation to ensure safe operation in the event of human error. Development Train stops The earliest systems were train stops, as still used by the New York City Subway, the Toronto subway, ...
is overlaid on top of the cab signalling system and will automatically apply the brakes and bring the train to a stop if the driver fails to control the speed of the train in accordance with the system's safety requirements. Cab signalling systems rely on tachometers, accelerometers, ultra-wideband units, inertia measurement units,
track circuits A track circuit is an electrical device used to prove the absence of a train on rail tracks to signallers and control relevant signals. An alternative to track circuits are axle counters. Principles and operation The basic principle behind ...
, to transponders that communicate with the cab, and communication-based train control systems.


Interlocking

In the early days of the railways, signalmen were responsible for ensuring any points (US: switches) were set correctly before allowing a train to proceed. Mistakes, however, led to accidents, sometimes with fatalities. The concept of the mechanical
interlocking In railway signalling, an interlocking is an arrangement of signal apparatus that prevents conflicting movements through an arrangement of tracks such as junctions or crossings. The signalling appliances and tracks are sometimes collectively re ...
of point switches, signals and other appliances was introduced to improve safety. This prevents a signalman from operating appliances in an unsafe sequence using mechanical means, such as clearing a signal while one or more sets of points are not set correctly for the route. Early interlocking systems used mechanical devices both to operate the signalling appliances and to ensure their safe operation. Beginning around the 1930s, electrical relay interlockings were used. Since the mid 1980s, new interlocking systems have tended to be of the electronic variety. Microprocessors decide what point switch movements are permissible. Modern interlocking systems and subsystems allow and prohibit certain point switch positions to enhance train safety.


Operating rules

Operating rules, policies and procedures are used by railroads to enhance safety. Specific operating rules may differ from country to country, and there may even be differences between separate railroads within the same country.


Argentina

The Argentinian operating rules are described in the ''Reglamento interno técnico de operaciones .I.T.O.' (''technical operating rule-book).''


Australia

The application of operating rules in Australia is called ''Safeworking''. The ''method of working'' for any particular region or location is referred-to as the "Safeworking system" for that region. Operating rules differ between states, although attempts are being made to formulate a national standard.


North America

In North America, and especially the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territori ...
, operating rules are called ''method of operation''. There are five main sets of operating rules in North America: * Canadian Rail Operating Rules (CROR), used by most Canadian railways, with the exception of Canadian National Railway's US operations, which uses a modified, proprietary version of the GCOR, known as USOR (United States Operating Rules) * General Code of Operating Rules (GCOR), used by many
Class I railroad In the United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, st ...
s, Class II railroads, and Short-line railroads in the United States *
Northeast Operating Rules Advisory Committee The Northeast Operating Rules Advisory Committee (NORAC) is a body of railroads that establish a set of operating rules for railroads in North America. The NORAC rulebook is used by full and associate member railroads, located mostly in the Northe ...
(NORAC), used by many railroads in the Northeast US *Class I
Norfolk Southern The Norfolk Southern Railway is a Class I freight railroad in the United States formed in 1982 with the merger of Norfolk and Western Railway and Southern Railway. With headquarters in Atlanta, the company operates 19,420 route miles (31, ...
uses a unique set of operating rules. *Class I CSX Transportation uses a unique set of operating rules.


United Kingdom

The operating rulebook for the United Kingdom is called the "GE/RT8000 Rule Book", more commonly known simply as "The Rule Book" by railway employees. It is controlled by the
Rail Safety and Standards Board The Rail Safety and Standards Board (RSSB) is a British independent company limited by guarantee. Interested parties include various rail industry organisations, including Network Rail, train operating companies (TOCs), and rolling stock compa ...
(RSSB), which is independent from Network Rail or any other train operating company or freight operating company. Most heritage railways operate to a simplified variant of a British Railways rule book.


Italy

In
Italy Italy ( it, Italia ), officially the Italian Republic, ) or the Republic of Italy, is a country in Southern Europe. It is located in the middle of the Mediterranean Sea, and its territory largely coincides with the homonymous geographical ...
, railway signalling is described in a particular instruction calle
''Regolamento Segnali''
(''Signal Regulation'').


India

The Indian operating rules, called "The General Rules", are common for all zonal railways of
Indian Railways Indian Railways (IR) is a statutory body under the ownership of Ministry of Railways, Government of India that operates India's national railway system. It manages the fourth largest national railway system in the world by size, with a tota ...
and can be amended only by the Railway Board. Subsidiary rules are added to the General Rules by zonal railways, which do not infringe the general rules. Corrections are brought about from time to time through correction slips.


Japan

Japanese railway signalling was initially based on the British railway signalling system. However, as signalling has advanced to meet the requirements of the modern railway network (and as a result of US influence), the Japanese signalling system is a mixture of British route signalling and American speed signalling.


See also

*
Communication Based Train Control Communications-based train control (CBTC) is a railway signaling system that uses telecommunications between the train and track equipment for traffic management and infrastructure control. CBTC allows a train's position to be known more accurat ...
Signal System * Gantry *
Institution of Railway Signal Engineers The Institution of Railway Signal Engineers (IRSE) is a worldwide professional body for all those engaged or interested in railway signalling and telecommunications (S&T) and allied disciplines. Local sections The IRSE is based in London, with ...
* Railroad chronometer * Rail sabotage *
Railroad switch A railroad switch (), turnout, or ''set ofpoints () is a mechanical installation enabling railway trains to be guided from one track to another, such as at a railway junction or where a spur or siding branches off. The most common t ...
* Railway semaphore signal *
Railway slide fence Part of a railway signaling system, a slide fence is a fence whose purpose is to prevent trains from being derailed by rockslides in mountainous areas where rockslides may occur without warning. The fence is designed to be displaced by a rock slide, ...
* Signalling block system * Signalling control * Toronto subway and RT signals * Train speed optimization *
Wrong-side failure A wrong-side failure describes a failure condition in a piece of railway signalling equipment that results in an unsafe state. A typical example would be a signal showing a 'proceed' aspect (e.g. green) when it should be showing a 'stop' or 'dang ...


Notes


General references

* * * * Director of S&T Engineering, West Midlands Project Grou
"Mechanical Interlocking."


External links


The Signal Page (TSP) – railway signalling world wide (Dutch)(English)

RailServe.com Signals & Communications
* Railways: History, Signalling, Engineerin

an


Signalling Record Society

The Institution of Railway Signal Engineers
{{Authority control Rail infrastructure