HOME
The Info List - Radio Spectrum


--- Advertisement ---



The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3 000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are extremely widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union
International Telecommunication Union
(ITU).[1] Different parts of the radio spectrum are allocated by the ITU
ITU
for different radio transmission technologies and applications; some 40 radiocommunication services are defined in the ITU's Radio
Radio
Regulations (RR).[2] In some cases, parts of the radio spectrum are sold or licensed to operators of private radio transmission services (for example, cellular telephone operators or broadcast television stations). Ranges of allocated frequencies are often referred to by their provisioned use (for example, cellular spectrum or television spectrum).[3] Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to utilize it more effectively is driving modern telecommunications innovations such as spread spectrum (ultra-wideband) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio

Contents

1 By frequency

1.1 ITU 1.2 IEEE 1.3 EU, NATO, US ECM frequency designations 1.4 Waveguide frequency bands 1.5 Comparison of radio band designation standards

2 By application

2.1 Broadcasting 2.2 Air band 2.3 Marine band 2.4 Amateur radio
Amateur radio
frequencies 2.5 Citizens' band and personal radio services 2.6 Industrial, scientific, medical 2.7 Land mobile
Land mobile
bands 2.8 Radio
Radio
control 2.9 Radar

3 See also 4 Notes 5 References 6 External links

By frequency[edit] A band is a small section of the spectrum of radio communication frequencies, in which channels are usually used or set aside for the same purpose. Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so great that the atmosphere is effectively opaque, until it becomes transparent again in the near-infrared and optical window frequency ranges. To prevent interference and allow for efficient use of the radio spectrum, similar services are allocated in bands. For example, broadcasting, mobile radio, or navigation devices, will be allocated in non-overlapping ranges of frequencies. Each of these bands has a basic bandplan which dictates how it is to be used and shared, to avoid interference and to set protocol for the compatibility of transmitters and receivers. See detail of bands:http://www.ntia.doc.gov/files/ntia/Spectrum_Use_Summary_Master-06212010.pdf As a matter of convention, the ITU
ITU
divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10n) metres, with corresponding frequency of 3×108−n hertz, and each covering a decade of frequency or wavelength. Each of these bands has a traditional name. For example, the term high frequency (HF) designates the wavelength range from 100 to 10 metres, corresponding to a frequency range of 3  MHz
MHz
to 30 MHz. This is just a naming convention and is not related to allocation; the ITU
ITU
further divides each band into subbands allocated to different uses.

Band name Abbreviation ITU
ITU
band Frequency
Frequency
and Wavelength
Wavelength
in Air Example Uses

Extremely low frequency ELF 1 3–30 Hz 99,930.8–9,993.1 km Communication with submarines

Super low frequency SLF 2 30–300 Hz 9,993.1–999.3 km Communication with submarines

Ultra low frequency ULF 3 300–3,000 Hz 999.3–99.9 km Submarine communication, communication within mines

Very low frequency VLF 4 3–30 kHz 99.9–10.0 km Navigation, time signals, submarine communication, wireless heart rate monitors, geophysics

Low frequency LF 5 30–300 kHz 10.0–1.0 km Navigation, time signals, AM longwave broadcasting (Europe and parts of Asia), RFID, amateur radio

Medium frequency MF 6 300–3,000 kHz 1.0–0.1 km AM (medium-wave) broadcasts, amateur radio, avalanche beacons

High frequency HF 7 3–30 MHz 99.9–10.0 m Shortwave
Shortwave
broadcasts, citizens band radio, amateur radio and over-the-horizon aviation communications, RFID, over-the-horizon radar, automatic link establishment (ALE) / near-vertical incidence skywave (NVIS) radio communications, marine and mobile radio telephony

Very high frequency VHF 8 30–300 MHz 10.0–1.0 m FM, television broadcasts, line-of-sight ground-to-aircraft and aircraft-to-aircraft communications, land mobile and maritime mobile communications, amateur radio, weather radio

Ultra high frequency UHF 9 300–3,000 MHz 1.0–0.1 m Television
Television
broadcasts, microwave oven, microwave devices/communications, radio astronomy, mobile phones, wireless LAN, Bluetooth, ZigBee, GPS
GPS
and two-way radios such as land mobile, FRS and GMRS radios, amateur radio, satellite radio, Remote control Systems, ADSB

Super high frequency SHF 10 3–30 GHz 99.9–10.0 mm Radio
Radio
astronomy, microwave devices/communications, wireless LAN, DSRC, most modern radars, communications satellites, cable and satellite television broadcasting, DBS, amateur radio, satellite radio

Extremely high frequency EHF 11 30–300 GHz 10.0–1.0 mm Radio
Radio
astronomy, high-frequency microwave radio relay, microwave remote sensing, amateur radio, directed-energy weapon, millimeter wave scanner, wireless LAN (802.11ad)

Terahertz or Tremendously high frequency THz or THF 12 300–3,000 GHz 1.0–0.1 mm Experimental medical imaging to replace X-rays, ultrafast molecular dynamics, condensed-matter physics, terahertz time-domain spectroscopy, terahertz computing/communications, remote sensing, amateur radio

ITU[edit] The ITU radio bands
ITU radio bands
are designations defined in the ITU
ITU
Radio Regulations. Article 2, provision No. 2.1 states that "the radio spectrum shall be subdivided into nine frequency bands, which shall be designated by progressive whole numbers in accordance with the following table[4]". The table originated with a recommendation of the IVth CCIR meeting, held in Bucharest in 1937, and was approved by the International Radio Conference held at Atlantic City, NJ in 1947. The idea to give each band a number, in which the number is the logarithm of the approximate geometric mean of the upper and lower band limits in Hz, originated with B.C. Fleming-Williams, who suggested it in a letter to the editor of Wireless
Wireless
Engineer in 1942. (For example, the approximate geometric mean of Band 7 is 10 MHz, or 107 Hz.)[5]

Table of ITU
ITU
radio bands

Band Number Abbreviation Frequency
Frequency
range Wavelength
Wavelength
range†

4 VLF 3 kHz to 30 kHz 10 km to 100 km

5 LF 30 kHz to 300 kHz 1 km to 10 km

6 MF 300 kHz to 3000 kHz 100 m to 1000 m

7 HF 3  MHz
MHz
to 30 MHz 10 m to 100 m

8 VHF 30  MHz
MHz
to 300 MHz 1 m to 10 m

9 UHF 300  MHz
MHz
to 3000 MHz 10 cm to 100 cm

10 SHF 3 GHz to 30 GHz 1 cm to 10 cm

11 EHF 30 GHz to 300 GHz 1 mm to 10 mm

12 THF 300 GHz to 3000 GHz 0.1 mm to 1 mm

† This column does not form part of the table in Provision No. 2.1 of the Radio
Radio
Regulations IEEE[edit]

Radar-frequency bands according to IEEE standard[6]

Band designation Frequency
Frequency
range

HF 0.003 to 0.03 GHz High Frequency[7]

VHF 0.03 to 0.3 GHz Very High Frequency[7]

UHF 0.3 to 1 GHz Ultra High Frequency[7]

L 1 to 2 GHz Long wave

S 2 to 4 GHz Short wave

C 4 to 8 GHz Compromise between S and X

X 8 to 12 GHz Used in WW II for fire control, X for cross (as in crosshair). Exotic.[8]

Ku 12 to 18 GHz Kurz-under

K 18 to 27 GHz Kurz (German for "short")

Ka 27 to 40 GHz Kurz-above

V 40 to 75 GHz

W 75 to 110 GHz W follows V in the alphabet

mm or G 110 to 300 GHz​[note 1] Millimeter[6]

^ The designation mm is also used to refer to the range from 30 to 300 GHz.[6]

EU, NATO, US ECM frequency designations[edit]

NATO LETTER BAND DESIGNATION[9][8][10] BROADCASTING BAND DESIGNATION

NEW NOMENCLATURE

OLD NOMENCLATURE

BAND FREQUENCY (MHz)

BAND FREQUENCY (MHz)

A 0 – 250

I 100 – 150

Band I 47 – 68  MHz
MHz
(TV)

Band II 87.5 – 108  MHz
MHz
(FM)

G 150 – 225

Band III 174 – 230  MHz
MHz
(TV)

B 250 – 500

P 225 – 390

C 500 – 1 000

L 390 – 1 550

Band IV 470 – 582  MHz
MHz
(TV)

Band V 582 – 862  MHz
MHz
(TV)

D 1 000 – 2 000

S 1 550 – 3 900

E 2 000 – 3 000

F 3 000 – 4 000

G 4 000 – 6 000

C 3 900 – 6 200

H 6 000 – 8 000

X 6 200 – 10 900

I 8 000 – 10 000

J 10 000 – 20 000

Ku 10 900 – 20 000

K 20 000 – 40 000

Ka 20 000 – 36 000

L 40 000 – 60 000

Q 36 000 – 46 000

V 46 000 – 56 000

M 60 000 – 100 000

W 56 000 – 100 000

US- MILITARY / SACLANT

N 100 000 – 200 000

O 100 000 – 200 000

Waveguide frequency bands[edit] See also: Waveguide (electromagnetism) § Waveguide in practice

Band Frequency
Frequency
range [11]

R band 1.70 to 2.60 GHz

D band 2.20 to 3.30 GHz

S band 2.60 to 3.95 GHz

E band 3.30 to 4.90 GHz

G band 3.95 to 5.85 GHz

F band 4.90 to 7.05 GHz

C band 5.85 to 8.20 GHz

H band 7.05 to 10.10 GHz

X band 8.2 to 12.4 GHz

Ku band 12.4 to 18.0 GHz

K band 18.0 to 26.5 GHz

Ka band 26.5 to 40.0 GHz

Q band 33 to 50 GHz

U band 40 to 60 GHz

V band 40 to 75 GHz

E band 60 to 90 GHz

W band 75 to 110 GHz

F band 90 to 140 GHz

D band 110 to 170 GHz

Y band 325 to 500 GHz

Comparison of radio band designation standards[edit]

Comparison of frequency band designations

Frequency IEEE[6] EU, NATO, US ECM ITU

no. abbr.

A  

3 Hz

1 ELF

30 Hz

2 SLF

300 Hz

3 ULF

3 kHz

4 VLF

30 kHz

5 LF

300 kHz

6 MF

3 MHz

HF 7 HF

30 MHz

VHF 8 VHF

250 MHz

B

300 MHz

UHF 9 UHF

500 MHz

C

1 GHz

L D

2 GHz

S E

3 GHz

F 10 SHF

4 GHz

C G

6 GHz

H

8 GHz

X I

10 GHz

J

12 GHz

Ku

18 GHz

K

20 GHz

K

27 GHz

Ka

30 GHz

11 EHF

40 GHz

V L

60 GHz

M

75 GHz

W

100 GHz

110 GHz

mm

300 GHz

12 THF

3 THz

 

By application [edit] Broadcasting[edit] Main article: Radio
Radio
broadcasting Broadcast frequencies:

Longwave
Longwave
AM Radio
Radio
= 148.5 kHz – 283.5 kHz (LF) Mediumwave AM Radio
Radio
= 525 kHz – 1710 kHz (MF) Shortwave
Shortwave
AM Radio
Radio
= 3  MHz
MHz
– 30  MHz
MHz
(HF)

Designations for television and FM radio broadcast frequencies vary between countries, see Television
Television
channel frequencies and FM broadcast band. Since VHF and UHF frequencies are desirable for many uses in urban areas, in North America some parts of the former television broadcasting band have been reassigned to cellular phone and various land mobile communications systems. Even within the allocation still dedicated to television, TV-band devices use channels without local broadcasters. The Apex band in the United States was a pre-WWII allocation for VHF audio broadcasting; it was made obsolete after the introduction of FM broadcasting. Air band[edit] Airband
Airband
refers to VHF frequencies 118 to 137 MHz, used for navigation and voice communication with aircraft. Trans-oceanic aircraft also carry HF radio and satellite transceivers. Marine band[edit] The greatest incentive for development of radio was the need to communicate with ships out of visual range of shore. From the very early days of radio, large oceangoing vessels carried powerful long-wave and medium-wave transmitters. High-frequency allocations are still designated for ships, although satellite systems have taken over some of the safety applications previously served by 500 kHz
500 kHz
and other frequencies. 2182 kHz
2182 kHz
is a medium-wave frequency still used for marine emergency communication. Marine VHF radio
Marine VHF radio
is used in coastal waters and relatively short-range communication between vessels and to shore stations. Radios are channelized, with different channels used for different purposes; marine Channel 16 is used for calling and emergencies. Amateur radio
Amateur radio
frequencies[edit] Amateur radio
Amateur radio
frequency allocations vary around the world. Several bands are common for amateurs worldwide, usually in the HF part of the spectrum. Other bands are national or regional allocations only due to differing allocations for other services, especially in the VHF and UHF parts of the radio spectrum. Citizens' band and personal radio services[edit] Citizens' band radio
Citizens' band radio
is allocated in many countries, using channelized radios in the upper HF part of the spectrum (around 27 MHz). It is used for personal, small business and hobby purposes. Other frequency allocations are used for similar services in different jurisdictions, for example UHF CB is allocated in Australia. A wide range of personal radio services exist around the world, usually emphasizing short-range communication between individuals or for small businesses, simplified or no license requirements, and usually FM transceivers using around 1 watt or less. Industrial, scientific, medical[edit] The ISM bands were initially reserved for non-communications uses of RF energy, such as microwave ovens, radio-frequency heating, and similar purposes. However, in recent years the largest use of these bands has been by short-range low-power communications systems, since users do not have to hold a radio operator's license. Cordless telephones, wireless computer networks, Bluetooth
Bluetooth
devices, and garage door openers all use the ISM bands. ISM devices do not have regulatory protection against interference from other users of the band. Land mobile
Land mobile
bands[edit] Bands of frequencies, especially in the VHF and UHF parts of the spectrum, are allocated for communication between fixed base stations and land mobile vehicle-mounted or portable transceivers. In the United States these services are informally known as business band radio. See also Professional mobile radio. Police radio
Police radio
and other public safety services such as fire departments and ambulances are generally found in the VHF and UHF parts of the spectrum. Trunking systems are often used to make most efficient use of the limited number of frequencies available. The demand for mobile telephone service has led to large blocks of radio spectrum allocated to cellular frequencies. Radio
Radio
control[edit] Reliable radio control uses bands dedicated to the purpose. Radio-controlled toys may use portions of unlicensed spectrum in the 27  MHz
MHz
or 49  MHz
MHz
bands, but more costly aircraft, boat, or land vehicle models use dedicated radio control frequencies near 72  MHz
MHz
to avoid interference by unlicensed uses. The 21st century has seen a move to 2.4 gigahertz spread spectrum RC control systems. Licensed amateur radio operators use portions of the 6-meter band
6-meter band
in North America. Industrial remote control of cranes or railway locomotives use assigned frequencies that vary by area. Radar[edit] Radar
Radar
applications use relatively high power pulse transmitters and sensitive receivers, so radar is operated on bands not used for other purposes. Most radar bands are in the microwave part of the spectrum, although certain important applications for meteorology make use of powerful transmitters in the UHF band. Radio
Radio
waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio
Radio
waves have frequencies as high as 300 GHz to as low as 3 kHz, though some definitions describe waves above 1 or 3 GHz as microwaves, or include waves of any lower frequency. At 300 GHz, the corresponding wavelength is 1 mm (0.039 in), and at 3 kHz is 100 km (62 mi). Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are generated by lightning, or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications. Radio
Radio
waves are generated by radio transmitters and received by radio receivers. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the earth (ground waves), shorter waves can reflect off the ionosphere and return to earth beyond the horizon (skywaves), while much shorter wavelengths bend or diffract very little and travel on a line of sight, so their propagation distances are limited to the visual horizon. To prevent interference between different users, the artificial generation and use of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU), which defines radio waves as "electromagnetic waves of frequencies arbitrarily lower than 3 000 GHz, propagated in space without artificial guide".[1] The radio spectrum is divided into a number of radio bands on the basis of frequency, allocated to different uses See also[edit]

Bandplan Bandstacked Cellular frequencies DXing Frequency
Frequency
allocation Geneva Frequency
Frequency
Plan of 1975 North American Regional Broadcasting Agreement Open spectrum Radio
Radio
astronomy Radio
Radio
§ Communication system Scanner (radio) Two-way radio U-NII Ultra-wideband WARC bands

Notes[edit]

^ ITU
ITU
Radio
Radio
Regulations – Article 1, Definitions of Radio
Radio
Services, Article 1.2 Administration: Any governmental department or service responsible for discharging the obligations undertaken in the Constitution of the International Telecommunication
Telecommunication
Union, in the Convention of the International Telecommunication Union
International Telecommunication Union
and in the Administrative Regulations (CS 1002) ^ International Telecommunication
Telecommunication
Union´s Radio
Radio
Regulations, Edition of 2012. ^ Colin Robinson (2003). Competition and regulation in utility markets. Edward Elgar Publishing. p. 175. ISBN 978-1-84376-230-0.  ^ ITU
ITU
Radio
Radio
Regulations, Volume 1, Article 2; Edition of 2008. Available online at [1] ^ Booth, C.F. (1949). "Nomenclature of Frequencies". The Post Office Electrical Engineers' Journal. 42 (1): 47–48.  ^ a b c d e IEEE Std 521-2002 Standard Letter Designations for Radar- Frequency
Frequency
Bands. ^ a b c Table 2 in [6] ^ a b Norman Friedman (2006). The Naval Institute Guide to World Naval Weapon Systems. Naval Institute Press. pp. xiii. ISBN 978-1-55750-262-9.  ^ Leonid A. Belov; Sergey M. Smolskiy; Victor N. Kochemasov (2012). Handbook of RF, Microwave, and Millimeter-Wave Components. Artech House. pp. 27–28. ISBN 978-1-60807-209-5.  ^ NATO Allied Radio
Radio
Frequency
Frequency
Agency (ARFA) HANDBOOK – VOLUME I; PART IV – APPENDICES, … G-2, … NOMENCLATURE OF THE FREQUENCY AND WAVELENTH BANDS USED IN RADIOCOMMUNCATION. ^ www.microwaves101.com "Waveguide frequency bands and interior dimensions"

References[edit]

ITU-R Recommendation V.431: Nomenclature of the frequency and wavelength bands used in telecommunications. International Telecommunication
Telecommunication
Union, Geneva. IEEE Standard 521-2002: Standard Letter Designations for Radar- Frequency
Frequency
Bands AFR 55-44/AR 105-86/OPNAVINST 3430.9A/MCO 3430.1, 27 October 1964 superseded by AFR 55-44/AR 105-86/OPNAVINST 3430.1A/MCO 3430.1A, 6 December 1978: Performing Electronic Countermeasures in the United States and Canada, Attachment 1,ECM Frequency
Frequency
Authorizations.

External links[edit]

UnwantedEmissions.com A reference to radio spectrum allocations. " Radio
Radio
spectrum: a vital resource in a wireless world" European Commission policy.

v t e

Telecommunications

History

Beacon Broadcasting Cable protection system Cable TV Communications satellite Computer network Drums Electrical telegraph Fax Heliographs Hydraulic telegraph Internet Mass media Mobile phone Optical telecommunication Optical telegraphy Pager Photophone Prepay mobile phone Radio Radiotelephone Satellite communications Semaphore Smartphone Smoke signals Telecommunications history Telautograph Telegraphy Teleprinter
Teleprinter
(teletype) Telephone The Telephone Cases Television Timeline of communication technology Undersea telegraph line Videoconferencing Videophone Videotelephony Whistled language

Pioneers

Edwin Howard Armstrong John Logie Baird Paul Baran Alexander Graham Bell Tim Berners-Lee Jagadish Chandra Bose Vint Cerf Claude Chappe Donald Davies Lee de Forest Philo Farnsworth Reginald Fessenden Elisha Gray Erna Schneider Hoover Charles K. Kao Hedy Lamarr Innocenzo Manzetti Guglielmo Marconi Antonio Meucci Radia Perlman Alexander Stepanovich Popov Johann Philipp Reis Nikola Tesla Camille Tissot Alfred Vail Charles Wheatstone Vladimir K. Zworykin

Transmission media

Coaxial cable Fiber-optic communication

Optical fiber

Free-space optical communication Molecular communication Radio
Radio
waves Transmission line

Network topology and switching

Links Nodes Terminal node Network switching (circuit packet) Telephone exchange

Multiplexing

Space-division Frequency-division Time-division Polarization-division Orbital angular-momentum Code-division

Networks

ARPANET BITNET Cellular network Computer CYCLADES Ethernet FidoNet Internet ISDN LAN Mobile NGN NPL network Public Switched Telephone Radio Telecommunications equipment Television Telex WAN Wireless World Wide Web

Category Portal

Authority control

.