RV Tauri variable
   HOME

TheInfoList



OR:

RV Tauri variables are luminous
variable stars A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as e ...
that have distinctive light variations with alternating deep and shallow minima.


History and discovery

German astronomer
Friedrich Wilhelm Argelander Friedrich Wilhelm August Argelander (22 March 1799 – 17 February 1875) was a German astronomer. He is known for his determinations of stellar brightnesses, positions, and distances. Life and work Argelander was born in Memel in the Kingd ...
monitored the distinctive variations in brightness of R Scuti from 1840 to 1850. R Sagittae was noted to be variable in 1859, but it was not until the discovery of
RV Tauri RV Tauri (''RV Tau'') is a star in the constellation Taurus. It is a yellow supergiant and is the prototype of a class of pulsating variables known as RV Tauri variables. It is a post-AGB star and a spectroscopic binary about away ...
by Russian astronomer Lidiya Tseraskaya in 1905 that the class of variable was recognised as distinct. Three spectroscopic groups were identified: * A, ''GK-type'' with spectra unambiguously of type G or K * B, ''Fp(R)'', spectra are inconsistent, with features of F, G, and later classes found together, plus carbon (class R) features * C, ''Fp'', peculiar spectra with generally weak absorption lines and without strong carbon bands RV Tauri stars are further classified into two photometric sub-types based on their light curves: * RVa: these are RV Tauri variables which do not vary in mean brightness * RVb: these are RV Tauri variables which show periodic variations in their mean brightness, so that their maxima and minima change on 600 to 1500 day timescales The photometric sub-types should not be confused with the spectroscopic sub-types which use capital letters, often appended to RV: RVA; RVB; and RVC. The
General Catalogue of Variable Stars The General Catalogue of Variable Stars (GCVS) is a list of variable stars. Its first edition, containing 10,820 stars, was published in 1948 by the Academy of Sciences of the USSR and edited by B. V. Kukarkin and P. P. Parenago. Second and thi ...
uses acronyms consisting of capital letters to identify variability types, and so uses RVA and RVB to refer to the two photometric sub-types.


Properties

RV Tau variables exhibit changes in luminosity which are tied to radial pulsations of their surfaces. Their changes in brightness are also correlated with changes in their
spectral type In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ...
. While at their brightest, the stars have spectral types F or G. At their dimmest, their spectral types change to K or M. The difference between maximum and minimum brightness can be as much as four magnitudes. The period of brightness fluctuations from one deep minimum to the next is typically around 30 to 150 days, and exhibits alternating primary and secondary minima, which can change relative to each other. For comparison with other type II Cepheids such as
W Virginis variables W Virginis variables are a subclass of Type II Cepheids which exhibit pulsation periods between 10–20 days,Wallerstein, G."The Cepheids of Population II and Related Stars" ''Publications of the Astronomical Society of the Pacific'', 114 p.689– ...
, this formal period is twice the fundamental pulsation period. Therefore, although the approximate division between W Vir variables and RV Tau variables is at a fundamental pulsation period of 20 days, RV Tau variables are typically described with periods of 40–150 days. The pulsations cause the star to be hottest and smallest approximately halfway from the primary minimum towards a maximum. The coolest temperatures are reached near to a deep minimum. When the brightness is increasing, hydrogen emission lines appear in the spectrum and many spectral lines become doubled, due to a shock wave in the atmosphere. The emission lines fade a few days after maximum brightness. The prototype of these variables,
RV Tauri RV Tauri (''RV Tau'') is a star in the constellation Taurus. It is a yellow supergiant and is the prototype of a class of pulsating variables known as RV Tauri variables. It is a post-AGB star and a spectroscopic binary about away ...
is a RVb type variable which exhibits brightness variations between magnitudes +9.8 and +13.3 with a formal period of 78.7 days. The brightest member of the class, R Scuti, is an RVa type, with an apparent magnitude varying from 4.6 to 8.9 and a formal period of 146.5 days. AC Herculis is an example of an RVa type variable. The luminosity of RV Tau variables is typically a few thousand times the sun, which places them at the upper end of the W Virginis instability strip. Therefore, RV Tau variables along with W Vir variables are sometimes considered a subclass of
Type II Cepheid Type II Cepheids are variable stars which pulsate with periods typically between 1 and 50 days. They are population II stars: old, typically metal-poor, low mass objects. Like all Cepheid variables, Type IIs exhibit a relationship between the st ...
s. They exhibit relationships between their periods, masses, and luminosity, although not with the precision of more conventional Cepheid variables. Although the spectra appear as supergiants, usually Ib, occasionally Ia, the actual luminosities are only a few thousand times the sun. The supergiant luminosity classes are due to very low surface gravities on pulsating low-mass and rarefied stars.


Evolution

RV Tauri variables are very luminous stars and are typically given a
supergiant Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spa ...
spectral luminosity class. However they are relatively low mass objects, not young massive stars. They are thought to be stars that started out similar to the sun and have now evolved to the end of the Asymptotic Giant Branch (AGB). Late AGB stars become increasingly unstable, show large amplitude variations as
Mira variable Mira variables (named for the prototype star Mira) are a class of pulsating stars characterized by very red colours, pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 2.5 magnitude at visual wavele ...
s, experience thermal pulses as internal hydrogen and helium shells alternate fusing, and rapidly lose mass. Eventually the hydrogen shell gets too close to the surface and is unable to trigger further pulses from the deeper helium shell, and the hot interior starts to be revealed by the loss of the outer layers. These post-AGB objects start to become hotter, heading towards becoming a white dwarf and possibly a planetary nebula. As a post-AGB star heats up it will cross the
instability strip The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillat ...
and the star will pulsate in the same way as a conventional Cepheid variable. These are theorised to be the RV Tauri stars. Such stars are clearly metal-deficient
Population II During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed ...
stars since it takes around 10 billion years for stars of that mass to evolve beyond the AGB. Their masses are now less than even for stars that were initially B class on the main sequence. Although a post-AGB crossing of the instability strip should happen in a period measured in thousands of years, even hundreds for the more massive examples, the known RV Tau stars have not shown the secular increase in temperature that would be expected. The main sequence progenitor of this type of star has a mass near to that of the sun, although they have already lost about half of that during red giant and AGB phases. They are also thought to be mostly binaries surrounded by a dusty disc.


Brightest Members

There are just over 100 known RV Tauri stars. The brightest RV Tauri stars are listed below.(source article)
/ref>


See also

*
List of variable stars , there are over 52,011 known variable stars, with more being discovered regularly, so a complete list of every single variable is impossible at this place (cf. GCVS). The following is a list of variable stars that are well-known, bright, signifi ...
*
Low-dimensional chaos in stellar pulsations Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to ded ...


References


External links

* GCVS
List of RV variable stars
* AAVSO
Quick Look View of AAVSO Observations
(get recent magnitude estimates)

{{Variable star topics