Quasi-periodic oscillation
   HOME

TheInfoList



OR:

In X-ray astronomy, quasi-periodic oscillation (QPO) is the manner in which the
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
light from an astronomical object flickers about certain frequencies. In these situations, the X-rays are emitted near the inner edge of an
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other ...
in which gas swirls onto a
compact object In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects ha ...
such as a
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
,
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
, or
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
. The QPO phenomenon promises to help astronomers understand the innermost regions of accretion disks and the masses, radii, and spin periods of white dwarfs, neutron stars, and black holes. QPOs could help test
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's theory of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
which makes predictions that differ most from those of
Newtonian gravity Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
when the gravitational force is strongest or when rotation is fastest (when a phenomenon called the Lense–Thirring effect comes into play). However, the various explanations of QPOs remain controversial and the conclusions reached from their study remain provisional. A QPO is identified by performing a
power spectrum The power spectrum S_(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, ...
of the
time series In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Ex ...
of the X-rays. A constant level of
white noise In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines ...
is expected from the random variation of sampling the object's light. Systems that show QPOs sometimes also show nonperiodic noise that appears as a continuous curve in the power spectrum. A periodic pulsation appears in the power spectrum as a peak of power at exactly one frequency (a
Dirac delta function In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the enti ...
given a long enough observation). A QPO, on the other hand, appears as a broader peak, sometimes with a Lorentzian shape. What sort of variation with time could cause a QPO? For example, the power spectrum of an oscillating shot appears as a continuum of noise together with a QPO. An oscillating shot is a sinusoidal variation that starts suddenly and decays exponentially. A scenario in which oscillating shots cause the observed QPOs could involve "blobs" of gas in orbit around a rotating, weakly magnetized neutron star. Each time a blob comes near a magnetic pole, more gas accretes and the X-rays increase. At the same time, the blob's mass decreases so that the oscillation decays. Often power spectra are formed from several time intervals and then added together before the QPO can be seen to be statistically significant.


History

QPOs were first identified in white dwarf systems and then in neutron star systems. At first the neutron star systems found to have QPOs were of a class ( Z sources and atoll sources) not known to have pulsations. The spin periods of these neutron stars were unknown as a result. These neutron stars are thought to have relatively low magnetic fields so the gas does not fall mostly onto their magnetic poles, as in accreting
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s. Because their magnetic fields are so low, the accretion disk can get very close to the neutron star before being disrupted by the magnetic field. The spectral variability of these neutron stars was seen to correspond to changes in the QPOs. Typical QPO frequencies were found to be between about 1 and 60  Hz. The fastest oscillations were found in a spectral state called the Horizontal Branch, and were thought to be a result of the combined rotation of the matter in the disk and the rotation of the collapsed star (the "beat frequency model"). During the Normal Branch and Flaring Branch, the star was thought to approach its
Eddington luminosity The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The stat ...
at which the force of the radiation could repel the accreting gas. This could give rise to a completely different kind of oscillation. Observations starting in 1996 with the
Rossi X-ray Timing Explorer The Rossi X-ray Timing Explorer (RXTE) was a NASA satellite that observed the time variation of astronomical X-ray sources, named after physicist Bruno Rossi. The RXTE had three instruments — an All Sky Monitor, the High-Energy X-ray Timing ...
could detect faster variability, and it was found that neutron stars and black holes emit X-rays that have QPOs with frequencies up to 1000 Hz or so. Often "twin peak" QPOs were found in which two oscillations of roughly the same power appeared at high amplitudes. These higher frequency QPOs may show behavior related to that of the lower frequency QPOs.


Measuring black holes

QPOs can be used to determine the mass of
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
s. The technique uses a relationship between black holes and the inner part of their surrounding disks, where gas spirals inward before reaching the event horizon. The hot gas piles up near the black hole and radiates a torrent of X-rays, with an intensity that varies in a pattern that repeats itself over a nearly regular interval. This signal is the QPO. Astronomers have long suspected that a QPO's frequency depends on the black hole's mass. The congestion zone lies close in for small black holes, so the QPO clock ticks quickly. As black holes increase in mass, the congestion zone is pushed farther out, so the QPO clock ticks slower and slower.


See also

*
Broad iron K line The K-line is a spectral peak in astronomical spectrometry used, along with the L-line, to observe and describe the light spectrum of stars. The K-line is associated with iron (Fe) and is described as being from emissions at ~6.4keV (thousands ...
*
Quasiperiodicity Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpred ...
* Neutron-star oscillation


References

{{neutron star X-rays Observational astronomy