Quantum critical point
   HOME

TheInfoList



OR:

A quantum critical point is a point in the phase diagram of a material where a continuous
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
takes place at absolute zero. A quantum critical point is typically achieved by a continuous suppression of a nonzero temperature phase transition to zero temperature by the application of a pressure, field, or through doping. Conventional phase transitions occur at nonzero temperature when the growth of random
thermal fluctuations In statistical mechanics, thermal fluctuations are random deviations of a system from its average state, that occur in a system at equilibrium.In statistical mechanics they are often simply referred to as fluctuations. All thermal fluctuations b ...
leads to a change in the physical state of a system. Condensed matter physics research over the past few decades has revealed a new class of phase transitions called
quantum phase transition In physics, a quantum phase transition (QPT) is a phase transition between different quantum phases ( phases of matter at zero temperature). Contrary to classical phase transitions, quantum phase transitions can only be accessed by varying a phys ...
s which take place at absolute zero. In the absence of the thermal fluctuations which trigger conventional phase transitions, quantum phase transitions are driven by the zero point quantum fluctuations associated with Heisenberg's
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
.


Overview

Within the class of
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
s, there are two main categories: at a ''first-order phase transition'', the properties shift discontinuously, as in the melting of solid, whereas at a ''second order phase transition'', the state of the system changes in a continuous fashion. Second-order phase transitions are marked by the growth of fluctuations on ever-longer length-scales. These fluctuations are called "critical fluctuations". At the critical point where a second-order transition occurs the critical fluctuations are
scale invariant In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical ter ...
and extend over the entire system. At a nonzero temperature phase transition, the fluctuations that develop at a critical point are governed by classical physics, because the characteristic energy of quantum fluctuations is always smaller than the characteristic Boltzmann thermal energy k_B T. At a quantum critical point, the critical fluctuations are quantum mechanical in nature, exhibiting scale invariance in both space and in time. Unlike classical critical points, where the critical fluctuations are limited to a narrow region around the phase transition, the influence of a quantum critical point is felt over a wide range of temperatures above the quantum critical point, so the effect of quantum criticality is felt without ever reaching absolute zero. Quantum criticality was first observed in
ferroelectrics Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the add ...
, in which the ferroelectric transition temperature is suppressed to zero. A wide variety of metallic
ferromagnets Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
and antiferromagnets have been observed to develop quantum critical behavior when their magnetic transition temperature is driven to zero through the application of pressure, chemical doping or magnetic fields. In these cases, the properties of the metal are radically transformed by the critical fluctuations, departing qualitatively from the standard
Fermi liquid Fermi liquid theory (also known as Landau's Fermi-liquid theory) is a theoretical model of interacting fermions that describes the normal state of most metals at sufficiently low temperatures. The interactions among the particles of the many-body ...
behavior, to form a metallic state sometimes called a non-Fermi liquid or a "strange metal". There is particular interest in these unusual metallic states, which are believed to exhibit a marked preponderance towards the development of superconductivity. Quantum critical fluctuations have also been shown to drive the formation of exotic magnetic phases in the vicinity of quantum critical points.


Quantum critical endpoints

Quantum critical points arise when a susceptibility diverges at zero temperature. There are a number of materials (such as CeNi2Ge2) where this occurs serendipitously. More frequently a material has to be tuned to a quantum critical point. Most commonly this is done by taking a system with a second-order phase transition which occurs at nonzero temperature and tuning it—for example by applying pressure or magnetic field or changing its chemical composition. CePd2Si2 is such an example, where the antiferromagnetic transition which occurs at about 10K under ambient pressure can be tuned to zero temperature by applying a pressure of 28,000 atmospheres. Less commonly a first-order transition can be made quantum critical. First-order transitions do not normally show critical fluctuations as the material moves discontinuously from one phase into another. However, if the first order phase transition does not involve a change of symmetry then the phase diagram can contain a critical endpoint where the first-order phase transition terminates. Such an endpoint has a divergent susceptibility. The transition between the liquid and gas phases is an example of a first-order transition without a change of symmetry and the critical endpoint is characterized by critical fluctuations known as
critical opalescence Critical opalescence is a phenomenon which arises in the region of a continuous, or second-order, phase transition. Originally reported by Charles Cagniard de la Tour in 1823 in mixtures of alcohol and water, its importance was recognised by Thomas ...
. A quantum critical endpoint arises when a nonzero temperature critical point is tuned to zero temperature. One of the best studied examples occurs in the layered ruthenate metal, Sr3Ru2O7 in a magnetic field. This material shows metamagnetism with a low-temperature first-order metamagnetic transition where the magnetization jumps when a magnetic field is applied within the directions of the layers. The first-order jump terminates in a critical endpoint at about 1 kelvin. By switching the direction of the magnetic field so that it points almost perpendicular to the layers, the critical endpoint is tuned to zero temperature at a field of about 8 teslas. The resulting quantum critical fluctuations dominate the physical properties of this material at nonzero temperatures and away from the critical field. The resistivity shows a non-Fermi liquid response, the effective mass of the electron grows and the magnetothermal expansion of the material is modified all in response to the quantum critical fluctuations.


Non-equilibrium quantum phase transition

An intuitive guess of the effect of a quantum critical point being affected by noise would be that the external noise defines an effective temperature. This effective temperature would introduce a well defined energy scale in the problem and break the scale invariance of the quantum critical point. On the contrary, it was recently found that certain types of noise can induce a non-equilibrium quantum critical state. This state is out-of-equilibrium because of the continuous energy flow introduced by the noise, but it still retains the scale invariant behavior typical of critical points.


Notes


References

* * * * * * *{{Cite news , last=Mariano de Souza , title=Unveiling the Physics of the Mutual Interactions in Paramagnets, journal=Scientific Reports , date=2020 , volume=10 , doi=10.1038/s41598-020-64632-x Quantum phases Condensed matter physics