Quantification of nucleic acids
   HOME

TheInfoList



OR:

In
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
, quantitation of nucleic acids is commonly performed to determine the average concentrations of DNA or RNA present in a mixture, as well as their purity. Reactions that use nucleic acids often require particular amounts and purity for optimum performance. To date, there are two main approaches used by scientists to quantitate, or establish the concentration, of nucleic acids (such as DNA or RNA) in a solution. These are spectrophotometric quantification and UV fluorescence tagging in presence of a DNA dye.


Spectrophotometric analysis

One of the most commonly used practices to quantitate DNA or RNA is the use of spectrophotometric analysis using a spectrophotometer. A spectrophotometer is able to determine the average concentrations of the nucleic acids DNA or RNA present in a mixture, as well as their purity. Spectrophotometric analysis is based on the principles that nucleic acids absorb
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
light in a specific pattern. In the case of DNA and RNA, a sample is exposed to ultraviolet light at a
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
of 260 nanometres (nm) and a photo-detector measures the light that passes through the sample. Some of the ultraviolet light will pass through and some will be absorbed by the DNA / RNA. The more light absorbed by the sample, the higher the nucleic acid concentration in the sample. The resulting effect is that less light will strike the
photodetector Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or ...
and this will produce a higher optical density (OD) Using the
Beer–Lambert law The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the light is travelling. The law is commonly applied t ...
it is possible to relate the amount of light absorbed to the concentration of the absorbing molecule. At a wavelength of 260 nm, the average extinction coefficient for double-stranded DNA is 0.020 (μg/ml)−1 cm−1, for single-stranded DNA it is 0.027 (μg/ml)−1 cm−1, for single-stranded RNA it is 0.025 (μg/ml)−1 cm−1 and for short single-stranded oligonucleotides it is dependent on the length and base composition. Thus, an
Absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative lo ...
(A) of 1 corresponds to a concentration of 50 μg/ml for double-stranded DNA. This method of calculation is valid for up to an A of at least 2. A more accurate extinction coefficient may be needed for oligonucleotides; these can be predicted using the nearest-neighbor model.


Calculations

The optical density is generated from equation: :Optical density= Log (Intensity of incident light / Intensity of
Transmitted light) In practical terms, a sample that contains no DNA or RNA should not
absorb any of the ultraviolet light and therefore produce an OD of 0 Optical density= Log (100/100)=0 When using spectrophotometric analysis to determine the concentration of DNA or RNA, the
Beer–Lambert law The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the light is travelling. The law is commonly applied t ...
is used to determine unknown concentrations without the need for standard curves. In essence, the Beer Lambert Law makes it possible to relate the amount of light absorbed to the concentration of the absorbing molecule. The following
absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative lo ...
units to nucleic acid concentration conversion factors are used to convert OD to concentration of unknown nucleic acid samples: :A260 dsDNA = 50 µg/ml :A260 ssDNA = 33 µg/ml :A260 ssRNA = 40 µg/ml


Conversion factors

When using a 10 mm path length, simply multiply the OD by the conversion factor to determine the concentration. Example, a 2.0 OD dsDNA sample corresponds to a sample with a 100 µg/ml concentration. When using a path length that is shorter than 10mm, the resultant OD will be reduced by a factor of 10/path length. Using the example above with a 3 mm path length, the OD for the 100 µg/ml sample would be reduced to 0.6. To normalize the concentration to a 10mm equivalent, the following is done: 0.6 OD X (10/3) * 50 µg/ml=100 µg/ml Most spectrophotometers allow selection of the nucleic acid type and path length such that resultant concentration is normalized to the 10 mm path length which is based on the principles of Beer's law.


A260 as quantity measurement

The "A260 unit" is used as a quantity measure for nucleic acids. One A260 unit is the amount of nucleic acid contained in 1 mL and producing an OD of 1. The same conversion factors apply, and therefore, in such contexts: :1 A260 unit dsDNA = 50 µg :1 A260 unit ssDNA = 33 µg :1 A260 unit ssRNA = 40 µg


Sample purity (260:280 / 260:230 ratios)

It is common for nucleic acid samples to be contaminated with other molecules (i.e. proteins, organic compounds, other). The secondary benefit of using spectrophotometric analysis for nucleic acid quantitation is the ability to determine sample purity using the 260 nm:280 nm calculation. The ratio of the absorbance at 260 and 280 nm (A260/280) is used to assess the purity of nucleic acids. For pure DNA, A260/280 is widely considered ~1.8 but has been argued to translate - due to numeric errors in the original Warburg paper - into a mix of 60% protein and 40% DNA.) The ratio for pure RNA A260/280 is ~2.0. These ratios are commonly used to assess the amount of protein contamination that is left from the nucleic acid isolation process since proteins absorb at 280 nm. The ratio of
absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative lo ...
at 260 nm vs 280 nm is commonly used to assess DNA contamination of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
solutions, since proteins (in particular, the aromatic amino acids) absorb light at 280 nm. The reverse, however, is not true — it takes a relatively large amount of protein contamination to significantly affect the 260:280 ratio in a nucleic acid solution. 260:280 ratio has high sensitivity for nucleic acid contamination in protein: 260:280 ratio lacks sensitivity for protein contamination in nucleic acids (table shown for RNA, 100% DNA is approximately 1.8): This difference is due to the much higher
mass attenuation coefficient The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance). Thus, ...
nucleic acids have at 260 nm and 280 nm, compared to that of proteins. Because of this, even for relatively high concentrations of protein, the protein contributes relatively little to the 260 and 280 absorbance. While the protein contamination cannot be reliably assessed with a 260:280 ratio, this also means that it contributes little error to DNA quantity estimation.


Contamination identification

Examination of sample spectra may be useful in identifying that a problem with sample purity exists.


Other common contaminants

* Contamination by
phenol Phenol (also called carbolic acid) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile. The molecule consists of a phenyl group () bonded to a hydroxy group (). Mildly acidic, it ...
, which is commonly used in nucleic acid purification, can significantly throw off quantification estimates. Phenol absorbs with a peak at 270 nm and a A260/280 of 1.2. Nucleic acid preparations uncontaminated by phenol should have a A260/280 of around 2. Contamination by phenol can significantly contribute to overestimation of DNA concentration. * Absorption at 230 nm can be caused by contamination by
phenolate Phenolates (also called phenoxides) are anions, salts, and esters of phenols. They may be formed by reaction of phenols with strong base. Properties Alkali metal phenolates, such as sodium phenolate hydrolyze in aqueous solution to form basic s ...
ion,
thiocyanates Thiocyanate (also known as rhodanide) is the anion . It is the conjugate base of thiocyanic acid. Common derivatives include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyr ...
, and other organic compounds. For a pure RNA sample, the A230:260:280 should be around 1:2:1, and for a pure DNA sample, the A230:260:280 should be around 1:1.8:1. * Absorption at 330 nm and higher indicates particulates contaminating the solution, causing scattering of light in the visible range. The value in a pure nucleic acid sample should be zero. * Negative values could result if an incorrect solution was used as blank. Alternatively, these values could arise due to fluorescence of a dye in the solution.


Analysis with fluorescent dye tagging

An alternative method to assess DNA and RNA concentration is to tag the sample with a
Fluorescent tag In molecular biology and biotechnology, a fluorescent tag, also known as a fluorescent label or fluorescent probe, is a molecule that is attached chemically to aid in the detection of a biomolecule such as a protein, antibody, or amino acid. Gener ...
, which is a
fluorescent Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, ...
dye used to measure the intensity of the dyes that bind to nucleic acids and selectively fluoresce when bound (e.g.
Ethidium bromide Ethidium bromide (or homidium bromide, chloride salt homidium chloride) is an intercalating agent commonly used as a fluorescent tag ( nucleic acid stain) in molecular biology laboratories for techniques such as agarose gel electrophoresis. It ...
). This method is useful for cases where concentration is too low to accurately assess with spectrophotometry and in cases where contaminants absorbing at 260 nm make accurate quantitation by that method impossible. The benefit of fluorescence quantitation of DNA and RNA is the improved sensitivity over spectrophotometric analysis. Although, that increase in sensitivity comes at the cost of a higher price per sample and a lengthier sample preparation process. There are two main ways to approach this. "Spotting" involves placing a sample directly onto an
agarose gel Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the ...
or
plastic wrap Plastic wrap, cling film, Saran wrap, cling wrap, Glad wrap or food wrap is a thin plastic film typically used for sealing food items in containers to keep them fresh over a longer period of time. Plastic wrap, typically sold on rolls in boxe ...
. The fluorescent dye is either present in the agarose gel, or is added in appropriate concentrations to the samples on the plastic film. A set of samples with known concentrations are spotted alongside the sample. The concentration of the unknown sample is then estimated by comparison with the fluorescence of these known concentrations. Alternatively, one may run the sample through an agarose or polyacrylamide gel, alongside some samples of known concentration. As with the spot test, concentration is estimated through comparison of fluorescent intensity with the known samples. If the sample volumes are large enough to use microplates or
cuvette A cuvette (French: cuvette = "little vessel") is a small tube-like container with straight sides and a circular or square cross section. It is sealed at one end, and made of a clear, transparent material such as plastic, glass, or fused quartz. ...
s, the dye-loaded samples can also be quantified with a fluorescence
photometer A photometer is an instrument that measures the strength of electromagnetic radiation in the range from ultraviolet to infrared and including the visible spectrum. Most photometers convert light into an electric current using a photoresistor, ...
. Minimum sample volume starts at 0.3 μl Nucleic Acid Quantification Accuracy and Reproducibility
/ref> To date there is no fluorescence method to determine protein contamination of a DNA sample that is similar to the 260 nm/280 nm spectrophotometric version.


See also

*
Nucleic acid methods Nucleic acid methods are the techniques used to study nucleic acids: DNA and RNA. Purification *DNA extraction * Phenol–chloroform extraction * Minicolumn purification * RNA extraction * Boom method *Synchronous coefficient of drag alteration ...
*
Phenol–chloroform extraction Phenol–chloroform extraction is a liquid-liquid extraction technique in molecular biology used to separate nucleic acids from proteins and lipids. Process Aqueous samples, lysed cells, or homogenised tissue are mixed with equal volumes of a pheno ...
* Column purification *
Protein methods Protein methods are the techniques used to study proteins. There are experimental methods for studying proteins (e.g., for detecting proteins, for isolating and purifying proteins, and for characterizing the structure and function of proteins, of ...


References


External links


IDT online tool for predicting nucleotide UV absorption spectrum


* Hillary Luebbehusen
The significance of 260/230 Ratio in Determining Nucleic Acid Purity
(pdf document)
double stranded, single stranded DNA and RNA quantification by 260nm absorption, Sauer lab at OpenWetWare

Absorbance to Concentration Web App @ DNA.UTAH.EDU

Nucleic Acid Quantification Accuracy and Reproducibility
{{Molecular biology Spectroscopy Biochemistry methods Nucleic acids